
lable at ScienceDirect

Carbon 184 (2021) 492e503
Contents lists avai
Carbon

journal homepage: www.elsevier .com/locate/carbon
Research Paper
Prediction and optimization of the thermal transport in hybrid
carbon-boron nitride honeycombs using machine learning

Yao Du , Penghua Ying , Jin Zhang *

School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
a r t i c l e i n f o

Article history:
Received 7 June 2021
Received in revised form
13 August 2021
Accepted 16 August 2021
Available online 19 August 2021

Keywords:
Carbon honeycombs
Boron nitride honeycombs
Machine learning
Molecular dynamic simulations
Thermal conductivity
* Corresponding author.
E-mail address: jinzhang@hit.edu.cn (J. Zhang).

https://doi.org/10.1016/j.carbon.2021.08.035
0008-6223/© 2021 Elsevier Ltd. All rights reserved.
a b s t r a c t

The recently discovered carbon honeycombs (CHCs) and boron nitride honeycombs (BNHCs) are found to
have the similar molecular structures but different thermal properties. Thus, through appropriately
patching together CHCs and BNHCs, the hybrid carbon-boron nitride honeycombs (CeBNHCs) with
tunable thermal conductivity can be achieved. In this paper, the machine learning (ML) method together
with molecular dynamics simulations is employed to study the thermal transport property of CeBNHCs,
and also utilized to design the structures of CeBNHCs for the specific thermal conductivity. Our forward
learning study reveals a big difference in the thermal conductivities of CeBNHCs with the same BNHC
doping level but different doping arrangements. Meanwhile, a nonmonotonic relation is observed be-
tween the thermal conductivity of CeBNHCs and their doping concentration, which, according to our
analyses of the phonon density of states and spectral thermal conductivity, is attributed to the
complicated phonon scattering behaviors in CeBNHCs. In addition, our ML-based method exhibits the
high accuracy and efficiency in the inverse design of CeBNHCs with any specific thermal conductivity.
Moreover, as for a target thermal conductivity, the present ML-based inverse design method can output
numerous potential optimal structures at once for CeBNHCs, which will greatly shorten the design
period of CeBNHCs.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Inspired by the discoveries and synthesis of some new carbon
and boron nitride materials at the nanoscale such as one-
dimensional (1D) carbon nanotubes (CNTs) [1], 1D boron nitride
nanotubes (BNNTs) [2], two-dimensional (2D) graphene [3] and 2D
hexagonal boron nitride (hBN) [4,5], vast scientific efforts are
currently devoted to study the physical properties of these new
carbon and BN allotropes and, accordingly, investigate the potential
engineering applications of these new materials. For instance, an
ultrahigh Young's modulus of ~1 TPa and an extremely large ther-
mal conductivity of ~6600 W/mK are observed in CNTs [6e8],
which are widely used in nano-sensors and composite materials
[9,10]. Similarly, graphene is reported to possess the extraordinary
mechanical and thermal properties involving the Young's modulus
of ~1 TPa, the tensile strength of 130 GPa [11] and a prominent
thermal conductivity of ~4000 W/mK [12,13], which make gra-
phene appealing in the applications of thermoelectric devices and
nanocomposites [14e16]. As the analogues of CNTs, BNNTs are
similarly found to possess a large axial Young's modulus of ~1.2 TPa
[17] and a high thermal conductivity of ~400 W/mK [18]. Mean-
while, the BNNT uniquely is a wide band gap semiconductor with
the distinguishable chemical stability [19,20], which thus can be
treated as an important semiconducting and encapsulating mate-
rial at the nanoscale [21,22]. The 2D hBN nanosheets have an ultra-
wide band gap [23], a high thermal conductivity [24e26] and a
large Young's modulus [27,28], all of which are comparable to those
of their 1D BNNT counterparts. Thus, hBN nanosheets are expected
to serve as the important matrices for high-performance nano-
composites [29,30] and also the important building blocks for next-
generation electronic devices [31].

Considering the fact that the low-dimensional carbon nano-
materials and their BN counterparts have the similarity in their
atomic structures but have the difference in some material prop-
erties, researchers also have made a great deal of efforts to explore
the synergy of the distinctive material properties by fabricating the
hybrid C-BN nanomaterials. These C-BN nanomaterials are ex-
pected to possess the physical properties different from their pure
components and thus have the broader engineering applications.
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Recently, the hybrid graphene-hBN sheets have been successfully
synthesized in experiments [32e34]. The physical performance of
these heterostructures can be significantly modified by changing
the doping concentration of their carbon or BN components. For
examples, the piezoelectric coefficient of hybrid graphene-hBN
sheet can be significantly increased by increasing the concentra-
tion of carbon component [35]. Meanwhile, the Young's modulus
and thermal conductivity of hybrid graphene-hBN sheets and C-BN
nanotubes are found to increase as the doping concentration of
carbon component increases [36e39].

Although the aforementioned carbon and BN nanomaterials
such as CNTs, BNNTs, graphene, hBN nanosheets and their heter-
ostructures possess many remarkable properties, the low-
dimensional structures of these materials greatly restrict their
further engineering applications. Under this circumstance, fabri-
cating new three-dimensional (3D) carbon and BN nanomaterials
having properties almost comparable to their low-dimensional
counterparts is receiving increasing attention from the material
community. Recently, 3D carbon honeycombs (CHCs) comprised of
graphene components have been synthesized successfully in ex-
periments [40]. Many studies have revealed that CHCs possess
numerous prominent properties involving the low density, large
surface area per unit mass and high specific strength [40e45],
which indicate that CHCs have great potential applications in gas
and liquid storage and are suitable to serve as the composite
matrices [40,46,47]. Similarly, the BN honeycomb (BNHC) has been
theoretically confirmed as a new stable 3D BN nanomaterial
[48e50], whose atomic configuration is analogous to that of its CHC
counterpart. Compared with CHCs, BNHCs are reported to possess
the unique piezopotential property [51,52]. In addition, both the
mechanical and thermal transport properties of BNHCs are found to
greatly lower than those of CHCs [52e54]. Inspired by the suc-
cessful fabrication of 2D hybrid C-BN nanomaterials in experiments
and the very different material properties observed between CHCs
and BNHCs, it is expected to establish 3D hybrid C-BN honeycombs
(CeBNHCs) comprised of both BNHC and CHC cells in the near
future, which may have the wide tunable material properties be-
tween those of pure BNHCs and CHCs. Thus, optimizing the BNHC
or CHC concentration in CeBNHCs and designing the pattern of
CeBNHC structures play the crucial roles in the future material
design of hybrid CeBNHCs.

In general, the conventional artificial design and automated
design are two methods widely used to design the materials with
required properties. It is noted that the artificial design often de-
pends on heuristic hypothesis or intuitive methodologies derived
from numerous errors and trials, which thus impede its application
in material structure design and optimization. In order to overcome
the limitation of artificial design methods, the emerging advanced
computational algorithms such as machine learning (ML), topo-
logical optimization and generative algorithms have been recently
proposed for designing material structures automatically. Espe-
cially, the ML-based methods have been widely utilized in
designing the molecular structures of complex nanomaterials to
satisfy some specific requirements. For examples, the ML method
has been employed to design the kirigami-inspired graphene for
searching optimal structures with the largest ultimate strain
[55,56]. Meanwhile, the hole distribution in porous graphene has
been optimized via ML to obtain target structures with desired
thermal conductivity [57,58] and mechanical properties [59,60].
Motivated by aforementioned studies, it is of great interest to use
the ML method to design the structures of CeBNHCs to make them
possess some specific material properties such as the required
thermal conductivity.

In this paper, through combing the ML method and classical
molecular dynamics (MD) simulations, we investigate the thermal
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transport property of CeBNHCs and also propose an inverse design
method for designing the structure of CeBNHCs with the required
thermal conductivity. Here, the impacts of the concentration and
arrangement of doping BNHC cells on the thermal conductivity of
CeBNHCs are analyzed carefully with the help of a convolutional
neural network (CNN), which is modified based on the VGGNet
[61]. With the aid of the CNN, a ML-based inverse structural opti-
mization method is developed for searching optimal structures
possessing the required thermal conductivity among a large-scale
design space. The obtained results indicate that the present ML-
based method is able to find plenty optimal CeBNHC structures
possessing the target thermal conductivity efficiently, accurately
and practically.

2. Models and methodology

2.1. Workflow

In present work, the workflow illustrated in Fig. 1 was employed
to investigate the thermal conductivity of a series of CeBNHCs
constructed and, meanwhile, to design the structure of CeBNHCs
with desired thermal transport property. In general, the workflow
contains the following three steps. The first step is to construct
numerous models and a large-scale data set as shown in Fig. 1(a).
During this step, different atomic structures of CeBNHCs were
generated by a random geometry generator. The thermal conduc-
tivities of them were computed by the nonequilibrium molecular
dynamics (NEMD) simulations, which were denoted as the true
thermal conductivities. Here, the grayscale images representing the
top-views of CeBNHC structures and their thermal conductivities
were assembled together to construct the sample library for the
later ML-based method. The second step is to define and optimize
the CNN model shown in Fig. 1(b). Based on the obtained CNN
model, the influence of BNHC concentration on the thermal con-
ductivity of CeBNHCs can be evaluated. The third step is to retrain
the CNN model with a new sample library to seek structures of
CeBNHCs with some required thermal conductivities [see in
Fig. 1(c)]. Based on the retrained CNN model enhanced by an
evolutionary approach during the iterations, we can design the
CeBNHC structures with desired thermal transport properties
efficiently. In what follows, some techniques employed in these
three steps will be briefly described.

2.2. Model construction

The CeBNHC structures considered in the present study were
constructed with the following procedures. Initially, as demon-
strated in Fig. 2(a), the pure CHC structures were constructed,
which were composed of the armchair-edged graphene nano-
ribbons with a length l of 7.38 Å [see in Fig. 2(c)]. Afterwards, some
cells in CHCs were randomly changed into BNHC cells. Here, the
selection of random replacements was determined by the random
geometry generator as shown in Fig. 1(a), where “1” and “0” denote
BNHC and CHC cells, respectively. In generating CeBNHC structures
through this method, some cell walls (graphene nanoribbons) of
CHC were replaced by armchair-edged BN nanoribbons with the
same length. After this treatment, as shown Fig. 2(b), a series of
CeBNHCs with different BNHC concentrations can be constructed.
It is noted that in CHCs, every three adjacent graphene nanoribbons
are linked together by a line of sp3-bonded carbon atoms as shown
in Fig. 2(c). However, due to the existence of some BN nanoribbon
components in CeBNHCs, in addition to the triple junctions of
graphene nanoribbons, some triple junctions comprised of one
graphene nanoribbon and two BN nanoribbons are also observed
[see in Fig. 2(d)].



Fig. 1. The workflow of ML-based method proposed here. (a) Models and dataset construction, which include the generation of numerous CeBNHC structures, and assembly of the
CeBNHC sample patterns and their thermal conductivities to establish the sample library. (b) Forward learning based on the CNN model, which is employed to explore the relation
between BNHC concentration and thermal conductivity of CeBNHCs. The inset shows the architecture of defined CNN model. (c) Inverse design, which contains a series of
evolutionary steps for searching optimal CeBNHC structures possessing required thermal conductivity. (A colour version of this figure can be viewed online.)
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Fig. 2. Schematics of (a) a pure CHC structure and (b) a hybrid CeBNHC structure. The junction configurations in (c) CHCs and (d) CeBNHCs, which correspond to the yellow dotted
regions in (a) and (b). Here, gray, blue and pink balls indicate carbon, nitrogen and boron atoms, respectively. (e) The top-view of the CeBNHC structure shown in (c). The gray and
blue hexagons represent CHC and BNHC cells, respectively. (A colour version of this figure can be viewed online.)
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In the present study, we mainly focus on the in-plane thermal
transport property of CeBNHCs. Thus, to simplify our analysis, the
CeBNHC structurewas equivalently simplified into a 2Dmodel. The
corresponding 2D top-view patterns of 3D CeBNHCs as shown in
Fig. 2(e) can be treated as the input images in the CNNmodel. Here,
the rectangular CeBNHC samples considered have a size of Nx�Ny

cells, where Nx and Ny denote numbers of honeycomb cells in x and
y directions, respectively. Here, all cells except those near the
boundaries in CeBNHCs can be treated as the designable candidate
blocks. Thus, the total number of possible doping BNHC cell can-
didates is Nc ¼ Nx�Ny-PNy/2R, where P…R denotes the floor function
and Ny is an odd number. When the number of doping BNHC cells is
fixed as Nd, a series of CeBNHCs containing Nc!/[Nd!$(Nc-Nd)!]
possible different patterns can be constructed by the random ge-
ometry generator. It is noted here that CeBNHCs with the similar
(or symmetric) structures are also considered here, because this
treatment can make the trained ML model have the ability to
distinguish the similar structures of CeBNHCs, which will thus
enhance the reliability and accuracy of the defined ML model.

In this work, we considered two simulation samples with same
length in z direction of 21.30 Å. One is the sample with a size of
5�5 cells (76.68�66.41 Å2) as shown in Fig. S1. This sample was
adopted to validate the stability and reliability of the present ML-
based method, since we can enumerate all results via conven-
tional method due to its relatively small size. The other one is a
larger model with a size of 6�7 cells (89.46�88.54 Å2) as shown in
Fig. 2(b), which was employed to further investigate the effect of
BNHC concentration and arrangement on the thermal conductivity
of CeBNHCs. Here, the total numbers of atoms in the small and
large CeBNHC systems are 6120 and 9520, respectively. The size
selected here for CeBNHC systems can result in a steady temper-
ature distribution in CeBNHC and thus a reliable thermal
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conductivity from NEMD simulations (see Fig. S4 in the Supple-
mentary Materials). In addition, as shown in Table S1 (see the
Supplementary Materials), almost no significant changes are found
in the dimensions of CeBNHCswith different BNHC concentrations.

2.3. NEMD simulations

In the ML-based method, an essential and initial step is to
construct the dataset. A series of CeBNHC structures has been built
by the above approach, then it is supposed to calculate each ther-
mal conductivity of them. Here, the NEMD simulations were per-
formed to estimate thermal conductivity of CeBNHCs with the aid
of open-source package LAMMPS [62]. For the sake of predicting
the thermal property of CeBNHC systems accurately, the covalent
bonding among C, B and N atoms was described by the optimized
Tersoff potential [63]. Since it can describe the phonon thermal
transport response better, the optimized Tersoff potential has been
successfully applied in many studies on researching the thermal
transport property of various carbon and BN nanomaterials
[36,37,64,65].

To perform NEMD simulations, as shown in Fig. 3(a), the whole
CeBNHC structure is divided into five regions along the x direction:
two fixed regions at both ends, hot and cold regions (heat source
and sink) adjacent to the fixed regions, and a free region between
heat sink and heat source. Here, the fixed, hot and cold regions have
the same length of 5 Å. After that, a heat flux (J) can be generated
between the hot and cold regions, which results in a temperature
gradient (dT/dx) in the middle free region. Here, the heat flux
equals to the thermal energy passing along the x direction of
CeBNHCs per unit time, the expression of which will be given later.
In addition, the periodic boundary condition was applied in the z
direction, while non-periodic boundary conditions were applied in



Fig. 3. (a) The NEMD simulation set-up for the thermal conductivity calculation. (b) The typical temperature distribution in CeBNHCs obtained from NEMD simulations at 300 K. (A
colour version of this figure can be viewed online.)
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the x and y directions to simulate a CeBNHCwith the finite in-plane
size.

Under the above implements, the NEMD simulations were
performed with the following procedure. First, the initial configu-
ration of a CeBNHCwas relaxed to its energy-minimized sate based
on the conjugate gradient method. Second, the structure was
relaxed again within the isothermal-isobaric (NPT) ensemble at
room temperature (300 K) and zero external pressure for 100 ps.
Here, the velocity Verlet algorithm with a time step of 1 fs was
utilized to integrate the Hamilton equations of motion determined
by Newton's second law. Third, a Nos�e-Hoover thermostat in the
canonical (NVT) ensemble was performed to the system at 300 K
for another 100 ps. As shown in Figs. S3(a)eS3(c), the energy,
pressure and temperature of the CeBNHC reach the steady values,
which indicates that the system is in the equilibrium state after the
structural relaxation. Fourth, the temperatures of hot and cold re-
gions were retained steadily at 330 K and 270 K by using a Langevin
thermostat within the microcanonical (NVE) ensemble for 200 ps,
which can be verified by Fig. S3(d) shown in the Supplementary
Materials. In addition, as shown in Figs. S4(b) and S5(b), this tem-
perature difference can result in a reliable temperature distribution
and thus a reliable thermal conductivity from NEMD simulations.
Last, the simulations continue for 1 ns under the conditions similar
to the previous step. The energy exchange between the hot and cold
regions thus can generate a heat flux in the middle free region.
Meanwhile, the middle free region of CeBNHC was divided into 20
slabs along the heat flux direction. The temperature distribution in
the CeBNHCs were thus evaluated by calculating the average
temperature of each slab. As shown in Fig. 3(b), a stable linear
temperature distribution along the x direction can be observed in
the CeBNHCs.

In this study, the following equation was employed to calculate
the heat flux (J) along the x direction [66]:

J ¼ 1
Ac
:
dEa
dt

; (1)

where Ea is the accumulated energy, Ac is the cross-sectional area of
CeBNHCs and t is the simulation time. During NEMD simulations, a
constant amount of energy (dEa) is added to the hot region at each
timestep (dt). Meanwhile, the same amount of energy should be
removed from the cold region. Here, the accumulated energy can be
represented by the summation of the kinetic and potential
energies:
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Ea ¼
XN
i

�
1
2
miv

2
i þ fi

�
; (2)

where mi, vi and fi are the mass, velocity and potential energy of
atom i, respectively, and N is the total atom number of the system.
After averaging the accumulated energy of hot and cold regions
within a period of simulation time in NEMD simulations, the heat
flux can be calculated from Eq. (1). Moreover, the average tem-
perature of the ith slab (Ti) can be calculated by Ref. [67]:

Ti ¼
2

3NiKB

XNi

j

p2j
2mj

; (3)

where pj and mj are the momentum and atomic mass of the jth
atom, respectively, Ni is the number of atoms in the ith slab, and KB

is the Boltzmann constant. Thus, after obtaining the heat flux from
Eq. (1) and the temperature distribution from Eq. (3) in NEMD
simulations, the thermal conductivity (k) of CeBNHCs can be
computed according to the following Fourier's law [66]:

k ¼ J
dT=dx

: (4)

2.4. ML-based optimization procedures

The performance of forward learning and inverse design based
on the ML method strongly relies on an efficient and reliable deep
neural network. Hence, a CNN model modified based on the
VGGNet [61] was constructed for predicting the thermal transport
property of CeBNHCs. As plotted in Fig. 1(b), the architecture of
CNN model considered here is comprised of four parts: an input
layer (the dataset), three convolutional layers (CLs), a fully con-
nected layer (FL), and an output layer. All data in the input layer was
randomly divided into two parts. Specifically, 90% datawas selected
to train the CNNmodel (training set), while the remaining 10% data
was used to validate the trained CNN model (validation set). Each
data considered here contains two parts: a grayscale image of size
56�56 pixels representing the top-view schematic of CeBNHC, and
a label illustrating the corresponding true thermal conductivity
calculated via NEMD simulations. Then, each CL was successively
followed by a batch normalization layer, a rectified linear unit
(ReLU) function and amax-pooling layer of size 2�2with a stride of



Fig. 4. Total energy of a 2�2�2 supercell of CeBNHC at 1000 K calculated by AIMD
simulations. The insets show the structure of CeBNHC before and after the simulation.
Here, gray, blue, and pink balls represent carbon, nitrogen and boron atoms, respec-
tively. (A colour version of this figure can be viewed online.)
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2. It is noted that the kernel size was fixed at 3�3 with a stride of 1,
while the numbers of kernel in three CLs were set as 16, 32 and 64,
respectively. In FL the number of neurons was fixed at 64, in which
the ReLU function was not performed. Furthermore, the batch size
and the epoch number for each batch were set as 10 and 400,
respectively. In the present CNN model, the entire parameter
optimization was achieved by monitoring the following mean
square error (MSE) between the predictions and targets with an
Adam optimizer:

MSE ¼ 1
Nt

XNt

i¼1

�
kit � kip

�2
; (5)

where Nt is the number of test data, kit is the true thermal con-
ductivity of the ith test data calculated fromNEMD simulations, and
kip is the predicted thermal conductivity of the ith test data
extracted from the MLmethod. A lower MSE value corresponds to a
CNN model with better performance. The stability and reliability of
defined CNN model will be verified later.

With the aid of constructed CNNmodels, as depicted in Fig. 1(b)
and (c), our ML method can be employed in the forward learning
the thermal conductivity of various CeBNHCs and also the inverse
designing CeBNHC structures that possess required thermal con-
ductivity. Specifically, in order to determine the thermal conduc-
tivity range of all possible CeBNHCs, it is necessary to understand
the impact of BNHC concentration on the thermal transport prop-
erty of CeBNHCs. Thus, the forward learning was first employed to
predict the thermal conductivities of a group of CeBNHC structures
possessing random doping distribution and concentration. In doing
this, a small part of the constructed CeBNHC samples was tested in
NEMD simulations to calculate their thermal conductivities. These
CeBNHCs together with their values of thermal conductivities were
utilized as the ML dataset to be fed into the optimized CNN model.
After predicting the thermal conductivities of the rest unexplored
CeBNHCs in sample library, the relation between the BNHC con-
centration and thermal conductivity of CeBNHCs can be obtained
as shown in Fig. 1(b). Based on the results obtained from the above
forward learning, value range of thermal conductivity of CeBNHCs
with different BNHC concentrations can be observed as well.
Accordingly, we can determine the number of doping cells Nd ac-
cording to the desired thermal conductivity of CeBNHCs.

After determining the value range of thermal conductivity of
various CeBNHCs, the inverse design strategy as shown in Fig. 1(c)
was performed to discover the optimal CeBNHC structures with
required thermal conductivity. Here, in order to establish another
sample library (or design space), a new group of CeBNHC struc-
tures with the determined number of doping cells Nd was con-
structed. For increasing the possibility for finding optimal
structures, the sample library volume was much larger than that in
the prior forward learning process. At the beginning of the ML-
based inverse design process, 100 CeBNHC structures were
randomly selected from the new sample library, whose thermal
conductivities were then calculated from NEMD simulations. Their
patterns and thermal conductivities thus constructed an initial
dataset for the whole inverse design process, i.e., the first genera-
tion of structure optimization. Afterwards, based on NEMD simu-
lations and ML predictions, the modification of thermal
conductivity of CeBNHCs was achieved according to the following
evolutionary procedures [see in Fig. 1(c)]. (1) The dataset was fed
into the CNN model to learn the relation between spatial location
and thermal conductivity k of CeBNHCs. (2) The trained CNNmodel
with high accuracy was established, which was used to predict the
thermal conductivities of untrained patterns in sample library. (3)
According to the predicted information and the required value of k,
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we selected the top 100 target patterns, which were considered in
NEMD simulations to calculate true k. (4) If the top 100 target
structures satisfied our requirement, the results showing the
regression performance of theML-based inverse designwas plotted
as a scatter graph. The optimal structures were thus determined at
the end. (5) If the structures did not satisfy our requirement, the
calculated k of top 100 target structures and their patterns in cur-
rent iteration would be added into the prior dataset as a new input
dataset of CNN model in the next iteration, resulting in the
continuous expansion on the volume of dataset during the inverse
design process. The optimization and discrimination procedures
were continued until the selected top 100 patterns satisfied our
requirements.

3. Results and discussion

3.1. Model and method validation

Before studying the thermal conductivity of CeBNHCs, we
should verify the thermodynamic stability of the constructed
CeBNHCs and, meanwhile, validate the accuracy the present ML-
based method. As shown in Fig. S2, a unit cell containing junc-
tions comprised of one graphene nanoribbon and two BN nano-
ribbons was employed here to equivalently represent the hybrid
CeBNHC structure, which has 64 atoms. The thermodynamic sta-
bility of the proposed CeBNHC system was examined by ab initio
molecular dynamics (AIMD) simulations with the aid of Vienna ab
initio simulation package (VASP) [68,69]. In doing this, the lattice
parameter optimization was firstly performed for the initially
constructed CeBNHC unit cell. Afterwards, a 2�2�2 supercell
containing 544 atoms was relaxed within the NVT ensemble at
1000 K by using Andersen thermostat for 50 ps. Here, the timestep
was selected as 2 fs, while the width of Gaussian smearing was
selected as 0.1 eV. The gamma-point scheme with 1�1�1 mesh
was applied in our AIMD simulations. As shown in Fig. 4, the total
energy of the supercell of the CeBNHC reaches equilibrium rapidly
at the beginning of AIMD simulations and remains almost un-
changed afterwards. Moreover, despite some slight distortions of
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atoms due to large thermal movements at high temperature, no
bond breakages or disorders are found in the atomic structures of
CeBNHCs after AIMD simulations. In other words, when compared
with the initial configuration, no topological change is observed
during the entire AIMD simulation process. These findings
demonstrate the thermodynamic stability of the proposed CeBNHC
structures, which, to some extent, indicates that the similar
CeBNHCs can be achievable in experiments.

To evaluate the reliability and efficiency of the proposed ML-
based methods, as mentioned in Sec. 2.4, we enumerated all
possible structures of CeBNHCs having a relatively small size of
5�5 cells (see in Fig. S1) and containing three doping BNHC cells,
i.e., Nd ¼ 3. Thus, 1771 different patterns of CeBNHCs were
considered in the sample library.We directly compared the thermal
conductivities of all CeBNHC structures calculated from NEMD
simulations to the results predicted from the ML method. In doing
this, the following parameter (R2) was introduced to estimate the
regression performance of CNN model:

R2 ¼ 1�
XNt

i¼1

���kit � kip

���
XNt

i¼1

����kit � 1
Nt

XNt

i¼1
kip

����2
(6)

It is noted that the ML method with a R2 closer to 1.0 exhibits a
better performance.

We firstly investigated the impacts of the depth of CNN model
and the number of neurons in FL to determine an optimal deep
neural network architecture. Values of R2 for different networks
containing the training and validation sets are given in Fig. S6(a).
Obviously, the performance of deeper CNN model “C16C32C64Fn”
is better than that of themonolayer CNNmodel “C64Fn” or the pure
fully connected model “Fn”. Here, “Cn” represents a CL consisting of
n kernels, while “Fn” denotes an FL with n neurons. Furthermore,
the value of R2 is observed to be much closer to 1.0 in the deeper
networkwith larger number of neurons in FL. Specifically, when the
FL contains 64 neurons, values of R2 are, respectively, 0.98 and 0.93
for training and validation sets, which indicate that the CNN now
can be utilized to accurately predict the thermal conductivity of
CeBNHCs. Under this circumstance, the “C16C32C64F64” model
containing 244353 trainable parameters was selected as the deep
neural network used in the present study.

After determining the optimized depth of CNN model, we then
need to choose the suitable dataset size as well as the batch size
and epoch number for each batch. First, we determine the batch
size. When the CNN models have the same epoch number of 400
but different batch sizes, the average convergence lines of MSE (or
learning curves) obtained during the training process of training
and validation sets are shown in Figs. S6(c) and S6(d), respectively.
It is obvious that MSE converges rapidly as the batch size
increasing. Particularly, when the batch size is smaller than 10, the
convergence ratewill no longer increase significantly. However, the
computational cost under this condition will be greatly increased.
Therefore, the batch size was selected as 10 in the subsequent
forward learning and inverse design procedures. In addition, the
difference of MES between training and validation sets after 400
epochs is lower than 0.2%, which indicates that there is no over-
fitting and under-fitting in the present CNN model. Second, we
determine the epoch number.When the batch size is selected as 10,
R2 of CNN models with the epoch number increasing from 10 to
1000 is graphically shown in Fig. S6(b). The value of R2 is found to
increase initially and reach a steady value when the epoch number
grows to 400. The steady values are 0.98 and 0.93 for the training
and validation sets, respectively, which indicate a good perfor-
mance of the present CNN models. Although we can further
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increase the epoch number to obtain a CNN model with higher
accuracy, this treatment is not efficient for the present study
because it will cause more computational cost with an extremely
small increase of R2. Hence, the epoch number was selected as 400
in our work. Last, we determine the dataset size. The MSE
convergence curves of CNNmodels with different dataset sizes (50,
100 and 150) are shown in Figs. S6(e) and S6(f). From Fig. S6(e) we
can see that the dataset size has a trivial effect on the learning
curves of the training set. As shown in Fig. S6(f), in the validation
set the learning performance of the CNN model with the dataset
size of 100 is better than others, since its learning curve is found to
converge much faster and better. Therefore, the dataset size was
selected as 100 in the ML process.

In the above discussion, we have identified five important pa-
rameters in the CNN models. By randomly selecting some data as
the dataset to feed into the CNNmodel, we optimized the trainable
parameters and thus obtained the thermal conductivity of
CeBNHCs from ML methods. Meanwhile, we also computed the
true thermal conductivity of all CeBNHCs in the sample library
directly via NEMD simulations. The linear regression between true
and predicted thermal conductivities of the present CeBNHCs is
shown in Fig. 5(a). As shown in this figure, values of R2 are 0.98 and
0.93 for training and validation sets, respectively, which indicate
that the developed CNNmodel can accurately estimate the thermal
conductivity of CeBNHCs. We further employed the CNN model in
the inverse design to search for the lowest and highest thermal
conductivities of CeBNHC samples with the size of 5�5 cells and
three doping BNHC cells. As shown in Fig. 5(b), the patterns of
CeBNHCs with the lowest and highest thermal conductivities
predicted from the ML method are exactly identical to those
directly identified from NEMD simulations. As expected, doping
BNHC cells in the CeBNHC with the lowest thermal conductivity
(1.28 W/mK) are vertical towards the heat flux direction (i.e., the x
direction), while the doping cells in the CeBNHC with the highest
thermal conductivity (2.40 W/mK) are parallel to the heat flux di-
rection. The good agreement between ML and MD methods in-
dicates that the ML method can be treated as an accurate and
efficient method to evaluate the thermal transport property of
CeBNHCs. In what follows, the ML method will be further
employed to study the impact of doping BNHC cells on the thermal
conductivity of a relatively large CeBNHC structure and, mean-
while, utilized to design the pattern of CeBNHCs with a desired
thermal conductivity.

3.2. Forward learning of the thermal conductivity

After verifying the accuracy of MLmethod, we employed the ML
method to investigate the influence of doping BNHC cells on the
thermal transport property of CeBNHC samples with a relatively
large size of 6�7 cells [see in Fig. 2(b)]. In doing this, the thermal
conductivity of CeBNHCs with the random arrangement and con-
centration of doping BNHC cells was predicted from the CNNmodel
defined above. The obtained results are graphically shown in
Fig. 6(a). It is found that the doping BNHC can significantly reduce
the thermal conductivity of CeBNHCs. In general, the reduction of
thermal conductivity observed in CeBNHCs mainly originates from
the following two factors. First, the thermal conductivity of BNHCs
is smaller than that of CHCs. Thus, the thermal conductivity of
CeBNHCs is expected to range between the values of CHCs and
BNHCs. Second, due to the heterostructure of CeBNHCs, the
phonon scattering in these hybrid systems is expected to be more
significant than that in pure CHCs and BNHCs, which can reduce the
thermal transport property. To figure out whether the phonon
scattering is indeed more significant in the present CeBNHCs, we
compared the phonon density of states (PDOS) of all atoms in CHC,



Fig. 5. (a) The linear regression between true and predicted thermal conductivities k. (b) The optimal patterns of CeBNHCs extracted from ML prediction and MD simulations. The
up and bottom panels show the top 2 target patterns of CeBNHCs with the highest and lowest k, respectively. (A colour version of this figure can be viewed online.)

Fig. 6. (a) Thermal conductivities of CeBNHCs with different BNHC concentrations.
The red stars represent the thermal conductivities of pure CHCs and BNHCs. The inset
shows the representative structure of CeBNHC containing 6 doping BNHC cells
considered in the inverse design. (b) The calculated PDOS patterns and (c) spectral
thermal conductivities of CHC, BNHC and CeBNHC containing 50% doping BNHC cells.
(A colour version of this figure can be viewed online.)
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BNHC and CeBNHC systems. Here, the PDOS was calculated by
applying the following Fourier transformation to the atomic ve-
locity autocorrelation functions at equilibrium statewithin the NVE
ensemble [70]:
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PDOSðuÞ ¼
ð
DXN

j¼1
vjðt0Þ,vjðt0 þ tÞ

+

DXN

j¼1
vjðt0Þ,vjðt0Þ

+ ,expð � 2piutÞdt (7)

where u is the phonon frequency, vj(t0) and vj(t0þt) represent the
velocities of the jth atom at the initial time t0 and the current time
t0þt of each calculation, respectively, and <…> means an atom
number-averaged velocity autocorrelation function. To obtain the
final PDOS patterns, 9000 parallel simulations were performed.
Here, the timestep, the correlation time and the total simulation
time in the simulation were chosen as 1 fs, 1 ps and 10 ps,
respectively. The convergence lines of velocity autocorrelation
functions of different systems are shown in Fig. S7. It is found that
the velocity autocorrelation function can converge to zero after the
simulationwith the chosen correlation time of 1 ps, which indicates
the reliability of the obtained PDOS.

In Fig. 6(b) we show the PDOS of the CeBNHC with the BNHC
doping concentration being 50%. For the sake of comparison, PDOS
patterns of the pure CHC and BNHC are also shown here. In the low
frequency range of 0e20 THz, the PDOS of BNHC generally is
slightly higher than that of CHC and CeBNHC. In the middle fre-
quency range of 20e40 THz, the CHC is generally found to have the
highest PDOS among three materials. Although the high frequency
peaks of CHC, BNHC and CeBNHC all locate around 48 THz, the
amplitude of BNHC is much higher than that of CHC and CeBNHC.
From this figure, we also see that when compared with pure CHC
and BNHC, fewer frequency peaks are observed in the PDOS of
CeBNHC. In other words, the PDOS pattern of CeBNHC is much
smoother than that of CHC and BNHC.

To better clarify the effect of phonon frequency on the thermal
conductivity of the CeBNHC, we also calculated its spectral thermal
conductivity k(u) with the aid of GPUMD package [71]. Details
about the calculation of spectral thermal conductivity are shown in
the Supplementary Materials. The obtained result is shown in
Fig. 6(c). For the sake of comparison, the corresponding results of
CHC and BNHC are also shown in this figure. It is found that the high
frequency phonons larger than 40 THz almost have no effects on
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the thermal conductivity of CHC, BNHC and CeBNHC. The thermal
transport in CHC is found to be mainly induced by the phonon vi-
bration in the range of 10e40 THz. As for the BNHC, the phonon
vibration in the range of 10e20 THz majorly determines its thermal
transport property. Similar to the CHC, the thermal transport in
CeBNHC is dominated by the phonon vibration in the range of
10e40 THz. However, k(u) of CeBNHC is apparently lower than that
of pure CHC and BNHC, which means that the CeBNHC containing
50% doping BNHC cells should possess a thermal conductivity
smaller than that of CHC and BNHC. The above findings, to some
extent, indicate that more phonon scattering indeed exists in
CeBNHCs, which is thus a factor possibly responsible for the
reduction of their thermal conductivity as shown in Fig. 6(a).

Furthermore, from Fig. 6(a) we can also see that the thermal
conductivity of CeBNHCs strongly depends on both the arrange-
ment and concentration of doping BNHC cells. For example, when
the concentration of doping BNHC cells is 15%, the thermal con-
ductivity k of CeBNHCs with different arrangements of BNHC cells
ranges from 1.41 W/mK to 2.14 W/mK. With increasing the con-
centration of doping BNHC cells, a nonmonotonic change is found
in the averaged k of CeBNHCswith different arrangements of BNHC
cells. Specifically, the averaged k is found to decrease from 3.92 W/
mK at the concentration of zero (pure CHCs) to 1.58 W/mK at the
concentration of 50%. However, when the concentration keeps
increasing from 50% to 100% (pure BNHCs), the averaged k is found
to be enhanced by 32%. The similar nonmonotonic relation be-
tween the thermal conductivity and the doping concentration is
also observed in other hybrid C-BN nanomaterials such as 2D
graphene-BN heterostructures [36,64]. The nonmonotonic relation
between the thermal conductivity and doping concentration can be
explained by the nonmonotonic change of phonon scattering in the
CeBNHCs with varied doping concentration of BNHC cells. It is
noted that the maximum degree of material hybridization occurs at
the CeBNHCs with 50% doping BNHC cells, which thus have the
most significant phonon scattering. Thus, with further increasing
the doping concentration of BNHC cells after 50%, the phonon
scattering in CeBNHCs oppositely decreases, which results in the
increase of thermal conductivity of CeBNHCs in this process.

3.3. Inverse design of CeBNHC structure

In addition to directly predicting the thermal conductivity of
CeBNHCs with different arrangements and concentrations of
doping BNHC cells, the ML method proposed here also can be uti-
lized to inversely design the pattern of CeBNHCs with a desired
thermal conductivity. As an example, inwhat follows, we employed
the ML-based evolutionary method to design CeBNHCs with four
specific thermal conductivities including the highest value, the
lowest value, and two random values (1.7 W/mK and 2.0 W/mK).
Similar to the above discussion, a large CeBNHC structure with a
size of 6�7 cells was considered here, which contained 39 candi-
date doping cells as shown in Fig. 2(b). According to the afore-
mentioned requirements of thermal conductivity and the results
derived from the above forward learning, the number of the doping
BNHC cells Nd was selected as 6, which led to more than three
million possibilities in total. Among these massive possible pat-
terns, 104 different patterns were randomly selected to generate
our sample library of inverse design.

As plotted in Fig. 7(a), the averaged thermal conductivity k of top
100 target structures for each iteration is involved to demonstrate
the inverse design procedure. In searching the structures possess-
ing the highest and lowest k, values of the averaged k are found to
converge after about 6 iterations, whichmeans that our CNNmodel
has found the optimal structures for the highest and lowest k of
CeBNHCs. In each iteration, we ignored the patterns that have been
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already calculated in NEMD simulations to increase the computa-
tional efficiency. Under this circumstance, in searching the target
structures, the thermal conductivity of only ~5% patterns within the
total sample library were calculated from NEMD simulations, while
the value of other ~95% samples were predicted by the ML method.
In Fig. S8, we list the top 5 optimal CeBNHC structures for the
lowest and highest k after each iteration. It can be seen that the
distribution of doping BNHC cells is extremely random initially, but
it evolves to be regular rapidly during the inverse design. The ob-
tained optimal patterns of the target CeBNHCs are also shown in
Fig. 7(f). In general, it is found that the doping cells are perpen-
dicular and parallel to the heat flux direction for the CeBNHCs
possessing the lowest and highest k, respectively. The highest
thermal conductivity of 2.69 W/mK observed in the present
CeBNHCs is twice higher than the lowest thermal conductivity of
1.31 W/mK, though it is 31% smaller than the value of pure CHCs. In
addition, the training results predicted at the last iteration in ML
method are also compared to the results computed by NEMD
simulations [see in Fig. 7(b) and (c)]. It is observed that the CNN
model exhibits a good regression performance at the local region
near the target value. The above results indicate that the proposed
ML-based optimization technique is reliable and efficient in
searching certain CeBNHC structures with the specific thermal
transport property.

To further verify whether the patterns of CeBNHCs with the
highest and lowest k predicted from the ML method are reliable
and, meanwhile, explain why these patterns have the highest and
lowest k, in Fig. 8 we show the temperature distributions in these
optimal structures. In the CeBNHCs with the highest k, the doping
BNHC cells are generally parallel to the heat flux direction. In this
way, most heat still can transport through the contiguous CHC cells.
As a result, this pattern is thus expected to possess the highest k,
since the thermal transport property of CHCs is better than that of
BNHCs. Indeed, as shown in Fig. 8(a), no significant temperature
concentration is found in this pattern and an almost linear and
uniform temperature distribution is observed in the entire CeBNHC
structure. In the CeBNHCs with the lowest k, the doping BNHC cells
are generally perpendicular to the heat flux direction. Thus, the
heat flux can be greatly halted behind these doping BNHC cells.
Indeed, as shown in Fig. 8(b), due to the existence of impediment to
the heat flux, strong temperature concentrations are observed near
the doping BNHC cells.

Afterwards, we employed theMLmethod to search the CeBNHC
structures with two randomly selected thermal conductivities, i.e.,
k ¼ 1.7 and 2.0 W/mK. The iteration process for searching the
optimal structures is also depicted in Fig. 7(a). It is observed that
the averaged k rapidly reaches the steady values of 1.7 and 2.0 W/
mK both after 4 iterations approximately. In Fig. 7(d) and (e), we
show the true thermal conductivities of these optimal structures of
CeBNHCs after the last iteration, which are mostly close to the
target values. The top 3 optimal structures of CeBNHCs with k of 1.7
and 2.0 W/mK after the last iteration are illustrated in Fig. 7(f).

Finally, to estimate the relative reliability of optimal structures
of CeBNHCs with the above target thermal conductivities
(maximum value, minimum value, 1.7 W/mK and 2.0 W/mK), we
computed their binding energies and compared the obtained re-
sults with the values of pure CHCs. Here, all results shown in Fig. S9
were obtained from MD simulations with the optimized Tersoff
potential [63]. It is found that the binding energy per atom of
CeBNHCs generally is only around 0.05 eV/atom higher than that of
CHCs and a relatively smaller binding energy can be observed in the
CeBNHCs with the tighter arrangement of doping BNHC cells. This
small binding energy existing in the optimal structures of CeBNHCs
proves the stability of their structures, which thus can be possibly
synthesized in experiments. According to above results, we can



Fig. 7. The structural optimization results of CeBNHC structure with a size of 6�7 cells. (a) Averaged thermal conductivity k of top 100 target patterns in each iteration during the
inverse design. The linear regression between the true and predicted (b) lowest and (c) highest k in the last iteration. The percent statistics of predicted structures with true k of (d)
1.7 W/mK and (e) 2.0 W/mK. (f) The optimal CeBNHC structures with the lowest k, highest k, and two randomly selected k (1.7 and 2.0 W/mK). (A colour version of this figure can be
viewed online.)

Fig. 8. The temperature distributions of optimal CeBNHC structures with (a) the highest and (b) lowest k, in which the symbol indicates the location of doping BNHC cells. (A colour
version of this figure can be viewed online.)
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come to the conclusion that the present ML method is good at
designing CeBNHC structures with desired thermal transport
properties efficiently, accurately and practically.

4. Conclusions

In summary, a method combing the classical MD simulations
and emerging ML algorithms is proposed in this work to forward
study the impact of doping BNHC cells on the thermal transport
property of hybrid CeBNHCs and also to inverse design the struc-
tures of CeBNHCs with specific thermal conductivities. Specifically,
through the forward learning, it is found that when the BNHC
doping concentration is same, the difference among thermal con-
ductivities of CeBNHCs with different arrangements of BNHC cells
can be extremely large. In addition, a nonmonotonic relation is
observed between the thermal conductivity of CeBNHCs and their
BNHC doping concentration, which is attributed to the complicated
phonon scattering behaviors in CeBNHCs. Moreover, the present
ML-based method also can be served as an accurate and effective
inverse design method for designing the structures of CeBNHCs
with specific thermal conductivities such as the minimum, the
maximum or any other intermediate values. As for a target thermal
conductivity, numerous potential optimal structures of CeBNHCs
can be proposed by the present ML-based inverse design method
at once. Overall, the present work not only significantly expands
current knowledge of the thermal transport property of hybrid
CeBNHCs, but also provides an efficient material designmethod for
tailoring the material properties of nanohoneycombs.
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