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A B S T R A C T   

Two-dimensional violet phosphorene (VP) nanosheets are promising semiconductor materials with unique cross 
structures distinct from those of their allotropes such as black phosphorene and blue phosphorene, but their 
mechanical behaviors remain almost unexplored. By using the first-principles calculations, in this paper we 
investigate the mechanical behaviors of monolayer, bilayer, and bulk VP under uniaxial tension. A phase 
transformation from the open-pore phase to closed-pore phase is observed in VP structures when under a specific 
tensile strain. It is revealed that the phase transformation is attributed to the competition between the rotation 
and elongation of sub-nano rods in VP structures during the loading process. Due to the phase transformation, the 
in-plane Poisson’s ratio of monolayer VP can become greater than 1.2, while the bulk VP possesses a negative 
out-of-plane Poisson’s ratio with a magnitude up to -0.3 at a certain strain. These results indicate that Poisson 
effects in VP are superior to those in any other existing two-dimensional materials. In addition, based on the 
tensor analysis of elastic constants, a strong mechanical anisotropy is observed in VP structures both before and 
after the phase transformation. Besides the mechanical properties, the band gap of all VP structures decreases as 
the applied tensile strain increases, which can eventually transform into the metallic state prior to their fracture. 
The combination of unique phase transformation, anomalous Poisson effect, strong mechanical anisotropy and 
tunable electronic properties render VP be a novel nanoscale metamaterial with multifunctional applications.   

1. Introduction 

Two-dimensional (2D) materials such as graphene and black phos-
phorene (BP) are attracting a great deal of attention due to their unique 
physical properties and the corresponding novel phenomena [1,2]. 
Different to the zero band gap of semimetal graphene, BP is a semi-
conductor with the direct band gap ranging from 0.3 eV (bulk) to 2.0 eV 
(monolayer) [3]. Specifically, the high carrier mobility together with the 
high optical and ultraviolet absorption of BP makes it appealing for the 
use in next-generation optoelectronics [2]. However, the chemical 
instability such as fast oxidation and degradation of BP has been 
recognized as the bottleneck in its applications. Very recently, another 
allotrope of layered phosphorus named violet phosphorus (VP) was 
synthesized in experiments [4], which was demonstrated to be a semi-
conductor with a direct band gap of 1.7 eV [4]. Moreover, the VP having 

a unique 2D nanosized cross structure [5] was proven to be more ther-
mally and chemically stable than its BP counterpart [4,6], though BP 
was previously considered as the most stable phosphorus allotrope. In 
other words, VP possesses a much better thermal and chemical stability 
performance than its BP and, simultaneously, can retain the direct band 
gap property, which suggest that VP materials are more promising 
candidates for semiconductor-related applications [7]. 

Understanding the mechanical properties of 2D semiconducting 
materials is not only crucial for the reliability of their applications in 
practical working environment but also of fundamental importance for 
the coupling between mechanical and other physical properties [8]. For 
example, the strain engineering technique has been extensively 
employed in previous studies to tune the electronic, optical, thermal, 
and piezo/flexoelectrical properties of 2D semiconducting materials [9]. 
Unlike its BP counterpart whose mechanical properties have been 
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extensively investigated theoretically and experimentally [10–12], the 
investigation on mechanical properties of VP is currently very limited. 
Until very recently, the initial experimental attempt [5] was conducted 
with the aid of atomic force microscope (AFM) based nanoindentation. 
The VP was demonstrated to possess an extremely high deformation 
resistance. The 2D Young’s modulus of monolayer VP was reported to be 
1512 ± 76 N m− 1, which is 4.4 times as high as that of graphene. 
However, restricted by the loading method of the AFM-based nano-
indentation, the mechanical behavior of VP under in-plane uniaxial 
tension cannot be fully revealed in the existing experiments. Further-
more, owing to its unique cross structure at the nanoscale, it is expected 
that the VP may have a distinct mechanical behavior under in-plane 
loading, which may have a strong influence on its band gap property, 
similar to the strain engineering of band gaps of other 2D materials such 
as graphene [13], hexagonal BN [14], MoS2 [15], and Bi2O2Se [16]. 

To this end, in the present work the first-principles calculations are 
performed to investigate the mechanical behaviors of monolayer, 
bilayer, and bulk VP under uniaxial tension. A tension-induced phase 
transformation phenomenon is observed in all VP structures. The ther-
modynamic and mechanical stability of the new phase is verified by 
molecular dynamics simulations and Born stability criteria. The me-
chanical properties of transformed new phase are compared with the 
values of its parent counterpart. Moreover, during the tension process of 
VP structures, an extremely large Poisson’s ratio is found in the in-plane 
direction while a negative Poisson’s ratio is found in the out-of-plane 
direction. This anomalous Poisson effect is explained by analysing the 
deformation mechanism of VP structures. In addition, the band gap of all 
VP structures is found to decrease with growing tensile strain, which 
eventually can transform into the metallic state at a large tensile strain. 
Our work not only reveals the potential of VP as nanoscale metamaterial 
with an extremely large in-plane Poisson’s ratio and a negative out-of- 
plane Poisson’s ratio from a fundamental perspective but also facili-
tates the applications of VP as a new class of band gap-tunable semi-
conductor derived by strain engineering. 

2. Models and methods 

The initial atomic structures of VP are shown in Fig. 1, the corre-
sponding lattice parameters of which were extracted from the references 
[4,17]. The VP materials with different thickness, i.e., monolayer, 
bilayer, and bulk VP structures were considered in this work to inves-
tigate the effect of thickness on the mechanical behaviours of VP. The VP 
consisting of two layers has a orthogonal network structure (see Fig. 1 
(a)), in which each component layer is composed of cross sub-nano rods 

with -[P2]-[P8]-[P2]-[P9]- repeating units and connected with the other 
layer through [P9] unit linking (see Fig. 1(c)). The side view of bulk VP 
considered in simulations is shown Fig. 1(b), while the simulation 
models of monolayer and bilayer VP can be further obtained by adding a 
sufficient vacuum layer of 15 Å in the cross-plane plane (z direction). 

First-principles calculations on mechanical properties and energy 
band structures were performed at the level of density functional theory 
(DFT), which were implemented through Vienna Ab initio Simulation 
Package (VASP) [18] with the aid of SCAN Meta-GGA + rVV10 vdW 
functional form [19]. The calculations were converged with an energy 
tolerance of 10-5 eV and a force tolerance of 0.01 eV/Å under a cutoff 
energy of 500 eV. All computations were carried out by automatic 
k-mesh generators with l = 0.03, where l in the unit of 2π/Å is the 
k-points resolved value between adjacent k-points in reciprocal cell and. 
The number N of k-points is further determined from 

N = max
(

1,
⃒
⃒
⃒ b
→
⃒
⃒
⃒

/
l
)
, (1)  

where b
→

is the reciprocal lattice vector in the specific direction. The 
optimized lattice parameters of monolayer, bilayer, and bulk VP are 
8.89 Å × 9.00 Å, 8.89 Å × 9.03 Å, and 8.92 Å × 9.10 Å × 20.56 Å, 
respectively, which are comparable to the experimental results [4]. 

3. Results and discussions 

In this section, the mechanical responses, phase transformation, and 
electronic properties of VP structures obtained from DFT calculations 
are discussed. Efforts are made to further explain the mechanism of some 
observed novel phenomenon including anisotropic elastic properties, 
the extremely large in-plane Poisson’s ratio, and the negative out-of- 
plane Poisson’s ratio. 

3.1. Tension-induced phase transformation 

We first investigated the mechanical behaviours of monolayer, 
bilayer, and bulk VP under uniaxial tension. Considering the similarity 
of the atomic structure of VP along x and y directions, the tension was 
applied only along the x direction, while the stress along the lateral 
direction (y direction) was released to zero. The unit cells of monolayer, 
bilayer, and bulk VP, respectively, containing 42, 84, and 84 atoms were 
employed here to simulate their tensile behaviors. Herein, we define the 
engineering strain as ϵi = 1 − Li/li, where L and l denote the crystal 
lengths of the structure after and before deformation, respectively, and 

Fig. 1. Atomic structures of VP considered in this work. (a) Top view of monolayer VP. (b) Side view of bulk VP. (c) The sub-nano rods of VP consisting of -[P2]-[P8]- 
[P2]-[P9]- repeating units. Here, the 4 × 4 × 1 supercells are presented for clarity. All atomic structures are drawn with aid of OVITO package [20]. 
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the subscripts i = x, y and z correspond to lengths in the x, y and z di-
rections, respectively. The uniaxial tension was applied with a small 
strain increment of 1% each step. In this loading process, the corre-
sponding stress was calculated as the total force divided by the cross- 
sectional area that is LyLz. In calculating the stress of VP structures 
during the tensile process, the thickness Lz of monolayer, bilayer and 
bulk counterparts under tension was, respectively, defined as L0

z , 2L0
z and 

2L0
z , where L0

z = 10.28 Å equalling to the layer separation in pristine 
bulk VP without tension [21–24]. 

The in-plane and out-of-plane Poisson’s ratios, i.e., υin and υout, can 
be further obtained: 

υin = −
ϵy

ϵx
,

υout = −
ϵz

ϵx
.

(2)  

In calculating υout, the thickness Lz of bulk VP was defined as the cell 
length in the z direction, while Lz of both monolayer and bilayer VP was 
similarly defined as the vertical distance of the farthest atomic pairs [21, 
23,25]. 

Fig. 2 shows the evolution of stress (σx), strain energy (U), and 
Poisson’s ratios (υin and υout) of VP structures with increasing strain (ϵx) 
until fracture. From Fig. 2(a), it can be found that the whole tension 
process of VP mainly includes three stages. At the first stage, σx increases 
linearly with growing ϵx when 0 < ϵx ≲ 0.05 and then keeps around a 
constant value at 0.05 ⪅ ϵx ⪅0.1, which corresponds to the trans-
formation from the elastic deformation to the plastic deformation. At the 
second stage, σx keeps decreasing with growing ϵx when 0.1 ⪅ ϵx ⪅0.2 
and finally reaches the minimum value at ϵx ≈ 0.2, showing an abnormal 
negative-stiffness behavior at this stage. At the final stage (ϵx ⪆ 0.2), σx 

turns to increase monotonically with increasing ϵx until the final fracture 
of VP. As for three VP structures with different thicknesses considered 
here, the fracture strain is found to decrease with increasing thickness, 
while the tensile strength of different VP structures follows the order of 
monolayer > bulk > bilayer. Specifically, according to Fig. 2(a), values 
of the tensile strength of monolayer, bilayer, and bulk VP are 14.15 GPa, 
12.30 GPa, and 12.82 GPa, respectively, while the corresponding frac-
ture strains are, respectively, 0.49, 0.45, and 0.42. Herein, the fracture 
strain is defined as the strain corresponding to the maximum stress, i.e., 
tensile strength. 

For monolayer and bilayer VP structures, their abnormal negative- 
stiffness behavior at the second stage leads to twice appearances of 
zero stress under tension (see Fig. 2(a)). These two zero-stress points at 
the σx − ϵx curves successively correspond to the maximum and the 
minimum points in the U − ϵx curves shown in Fig. 2(b). Specifically, the 
minimum point of U indicates the onset of phase transformation 
occurring in monolayer and bilayer VP structures due to tensile loading 
(see the inset in Fig. 2(b)), while the maximum point of U corresponds to 
the energetic barrier of phase transformation. The new phases of 
monolayer and bilayer VP structures are metastable, because the energy 
of new phases is slightly higher than that of the parent phase. Different 
from monolayer and bilayer VP structures, a discontinuous variation of 
U with growing ϵx is observed in the bulk VP structure, since a sudden 
drop of U occurs at ϵx ≈ 0.24. This sudden drop of the energy of bulk VP 
is also accompanied by a sudden drop of its stress (see Fig. 2(a)). We 
attribute this energy and stress drop phenomenon to the interlayer slip 
occurring in the phase transformation process of bulk VP structure, 
which will be discussed in details in section 3.4. 

Fig. 2(c) and (d), respectively, shows the evolution of υin and υout 
with growing ϵx. It is found that υin first increases with growing ϵx when 

Fig. 2. Evolution of (a) stress σx, (b) energy U, (c) in-plane Poisson’s ratio υin, and (d) out-of-plane Poisson’s ratio υout of monolayer, bilayer, and bulk VP during the 
tensile loading process. Here, the inset in (d) shows the thickness definition of bilayer VP. 
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ϵx ⪅ 0.2. Afterwards, when ϵx ⪆ 0.2, υin begins to decrease as ϵx increases. 
In other words, the change in υin with varied ϵx generally exhibits a 
convex parabolic shape, which reaches the maximum value at ϵx ≈ 0.2. 
Specifically, the maximum values of υin are 1.20, 1.15, and 1.08 for 
monolayer, bilayer, and bulk VP structures, respectively. All of these 
values are larger than one, which indicates that the magnitude of the 
responded transverse strain ϵy is much larger than that of the applied 
longitudinal strain ϵx. As for all VP structures, their υout is positive at the 
initial stage. However, when under tensile loading, υout can shift from 
the initial positive value to a negative value with the transition occur-
ring at the strains of 0.18, 0.16, and 0.10 for monolayer, bilayer, and 
bulk VP structures, respectively. The maximum negative υout of mono-
layer, bilayer, and bulk VP are -0.096, -0.091, and -0.320, which are 
observed at ϵx = 0.29, 0.25, and 0.23, respectively. Here, the maximum 
negative υout refers to the negative υout with the maximum absolute 
value. 

Taking monolayer VP as an example, we show in Fig. S1 (see sup-
plementary materials) the evolution of stress σx and energy U of both 1 
× 1 × 1 and 2 × 2 × 1 supercells during the similar tensile simulations to 
examine the effect of the size of the supercell on the tensile behaviors. In 
general, results of these two models are qualitatively similar to each 
other, though a small quantitative difference is observed. This result 
further proves the existence of unique mechanical behaviors such as the 
negative stiffness and phase transformation behaviors in VP, irrespective 
of the supercell size of VP considered in simulations. In Table 1, we 
compare υout of VP structures considered in the present work with the 
values of υout previously reported for some other monolayer and bilayer 
2D materials similarly possessing the out-of-plane auxetic property. 
When compared with their black counterparts [21], the present VP 
structures are found to possess a more significant auxetic behavior. In 
addition, the maximum negative υout of the present VP structures is 
comparable to values of other monolayer black phosphorene-like 
structures [22,26,27], monolayer M2Se3 [28], bilayer graphene and 
graphene-based heterostructures [29,30], but is much smaller than that 
of monolayer X3M2 [23]. 

Based on σx − ϵx and U − ϵx curves shown in Fig. 2(a) and (b), the 
tension-induced phase transformation can be clearly detected in VP 
structures with different thicknesses. To determine the atomic structures 
of VP after the phase transformation, the new phases of monolayer, 

bilayer and bulk VP structures are obtained after performing the geo-
metric optimization to their structures at the tensile strains of 0.24 for 
monolayer VP, 0.22 for bilayer VP, and 0.25 for bulk VP, respectively, 
which correspond to critical strains at the onset of their phase trans-
formation as shown in Fig. 2(b). Fig. 3(a) shows atomic structures of the 
parent and transformed phases of monolayer VP. It can be seen that the 
transformed phase has an asymmetric structure, which shows a closed- 
pore structure enclosed by the cross sub-nano rods. This is distinctly 
different with the open-pore structure of the parent phase of monolayer 
VP. The similar closed-pore structure is also found in the transformed 
phases of both bilayer and bulk VP. Thus, the parent phase and trans-
formed phase of VP are named here as op (open-pore) phase and cp 
(closed-pore) phase, respectively. The lattice constants of op and cp 
phases are listed in Table 2. To quantitatively compare the structure 
changes induced by the phase transformation, we further calculate the 
in-plane angle θ between the cross sub-nano rods of op and cp phases. By 
assuming that the sub-nano rods before and after phase transformation 
remain straight, θ can be estimated as: 

θ = arctan
2Ly

Lx
. (3)  

We find that θ of op and cp phases approximately equals to 90◦ and 60◦

(see Fig. 3(a)), respectively, indicating a structural transformation from 
the orthogonal network to a skew network for VP structures. In addition 
to the structure changes observed in the in-plane directions, the thick-
ness (i.e., Lz) of bilayer and bulk VP structures is found to increase from 
21.56 Å and 20.56 Å at the parent op phase to 22.09 Å and 21.36 Å at the 
transformed cp phase, respectively, which is consistent with the out-of- 
plane auxetic behavior mentioned before (see Fig. 2(d)). 

To verify the thermodynamic stability of VP structures after phase 
transformation, taking the monolayer VP as an example, we preformed 
ab initio molecular dynamics (AIMD) simulations of its cp phase for 5000 
steps. In doing this, a 2 × 2 × 1 supercell based on the optimized 
structure containing 168 atoms was simulated within the NVT ensemble 
using Andersen thermostat at 300 K, a time step of 2 fs, and a 1 × 1 × 1 k- 
point mesh. The AIMD simulations were totally run for 10 ps. The energy 
evolution during the entire simulation is plotted in Fig. 3(b). It is found 
that the energy reaches equilibrium rapidly at the beginning of AIMD 
simulations and remains almost unchanged afterwards. Moreover, the 
structure obtained from AIMD simulations at the time of 10 ps (see in-
sects in (Fig. 3(b))) is almost identical to the original cp phase of 
monolayer VP (Fig. 3(a)) without any bond breakages or disorders. 
These results indicate the thermodynamic stability of the transformed cp 
phase of VP structures. 

3.2. Anisotropic elastic properties 

In section 3.1, we revealed the tension-induced op-to-cp phase 
transformation in VP structures and further demonstrated the thermo-
dynamic stability of the transformed cp phase at the finite temperature. 
In this section, we further investigate the elastic properties of cp phases 
and compare the mechanical properties of the transformed phase to 
those of its parent counterpart. 

Since monolayer and multi-layer VP structures in current work can 
be considered as 2D rectangular system, we only consider the 2D elastic 
constants of VP under the in-plane stress condition using Viogt scheme 
[31]. Under this circumstance, the constitutive equation of VP can be 
written as: 
⎡

⎣
σ1
σ2
σ6

⎤

⎦ =

⎡

⎣
C11 C12 0
C12 C22 0
0 0 C66

⎤

⎦

⎡

⎣
ϵ1
ϵ2
ϵ6

⎤

⎦, (4)  

where σi and ϵj indicate the stress and strain, Cij is the elastic constant 
tensor, i, j = 1, 2, and 6 in the Voigt notation correspond to xx, yy, and xy 
in tensor notation, respectively. Based on the elastic constants, one can 

Table 1 
Out-of-plane Poisson’s ratios of VP structures and other 2D crystals reported 
before.  

Classification Material Value  

Black 
phosphorene [21] 

− 0.027 

Monolayer black phosphorene 
Monolayer black phosphorene 

α-arsenene [26] − 0.093 
MX [22] − 0.004, − 0.210, 

− 0.208, − 0.433  

BP5 [27] − 0.037 
Monolayer M2Se3 Co2Se3 [28] − 0.24 

Ni2Se3 [28] − 0.22 
Pd2Se3 [28] − 0.20 

Monolayer X3M2 S3N2 [23] − 0.754 
Se3N2 [23] − 0.288 
S3P2 [23] − 0.706 
Se3P2 [23] − 0.679 
S3As2 [23] − 1.292 
Se3As2 [23] − 0.556 

Bilayer graphene and Graphene-based 
heterostructures  

Bilayer graphene 
[29] 

− 0.061 

Graphene/MoS2 

[29] 
− 0.090 

Graphene/h-BN 
[30] 

− 0.111 

VP structures Monolayer VP − 0.096 
Monolayer VP − 0.091 
Bulk VP − 0.320  
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rewrite the elastic constants in a new basis set and further calculate the 
orientation-dependent Young’s modulus E(θ), shear modulus G(θ), and 
Poisson’s ratio υin(θ) of 2D rectangular system based on the following 
formula [32,33]: 

E(θ) = 1
/(

S11a4 + S22b4 + (S66 + 2S12)a2b2),

G(θ) = 1
/(

4(S11 + S22 − 2S12)a2b2 + S66
(
a2 − b2)2

))
,

υin(θ) = − E(θ)
(
(S11 + S22 − S66)a2b2 + S12

(
a4 + b4)),

(5)  

with 

a = cos(θ), b = sin(θ), (6)  

in which θ denotes the angle between the new axis and the original + x 
axis. S11, S22, and S66 in Eq. (5) are compliance constants that can be 
obtained by inverting the elastic constants matrix as defined in Eq. (4). 

We calculated the elastic constants of VP structures on the basis of 
stress-strain relationship (Eq. (4)) with the aid of VASPKIT package [34]. 

Each elastic constant component was determined by using the first-order 
derivative of the stress-strain curve that contains nine small strains 
ranging from − 2% to 2% in the elastic regime. For elastic tensor cal-
culations of both op phase and cp phase, the thickness Lz of monolayer, 
bilayer and bulk VP structures, respectively, defined as L0

z , 2L0
z and 2L0

z , 
where L0

z equalling to the layer separation in the corresponding bulk VP. 
As listed in Table 2, L0

z equals to 10.28 and 10.68 for op phase and cp 
phase, respectively. All elastic constant components together with E, G, 
and υin in the original + x axis are listed in Table 2, while the 
orientation-dependent E(θ), G(θ), and υin(θ) obtained by Eq. (5) are 
presented in Fig. 4. 

The elastic constants obtained above can be employed to examine 
the mechanical stability of 2D VP structures including both op and cp 
phases. On the basis of the Born stability criteria [35], Mazdziarz et al. 
[36] proposed the stability criteria for 2D rectangular lattices with the 
following forms: 

1
2

(

C11 + C22 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4C2
12 − (C11 − C22)

2
√ )

> 0,

1
2

(

C11 + C22 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4C2
12 − (C11 − C22)

2
√ )

> 0,

C66 > 0.

(7)  

Substituting the elastic constants listed in Table 2 to Eq. (7), we find that 
the stability criteria is satisfied for all VP structures, demonstrating the 
mechanical stability of the parent op phase and transformed cp phase for 
monolayer, bilayer, and bulk VP. 

From the elastic constants listed in Table 2, one can clearly find that 
the parent op phases of all VP structures show the similar mechanical 
properties in both x and y directions. However, a strongly different 
mechanical behavior is observed in the cp phases of VP, whose C11 is 
much larger than C22. This different mechanical properties observed 
between op and cp phases of VP structures can be easily understood by 
their structures before and after phase transformation as shown in Fig. 3 
(a). In the op phase, VP has a symmetry structure along x and y di-
rections, while this symmetry is broken in the cp phase. In addition, 
regarding each component of elastic constants of VP before and after 
phase transformation, the most significant difference is observed in C11 
of op and cp phases. Taking the monolayer VP for example, C11 of its cp 
phase is 140.87 GPa, which is more than twice the value of its op 

Fig. 3. (a) The atomic structure of parent op phase and transformed cp phase of monolayer VP. Here, for clarity, the 4 × 4 × 1 supercell is presented for both op and 
cp phases. (b) Total energy U of the 2 × 2 × 1 supercell of the cp phase of monolayer VP at 300 K calculated by AIMD simulations. The inset shows the structure of cp 
phase at 10 ps extracted from AIMD simulations. 

Table 2 
A comparison of lattice constants and mechanical properties of op and cp phases 
of monolayer, bilayer, and bulk VP structures. The lattice constants lx, ly, and lz 
are crystal lengths in the x, y and z directions, respectively, which all are in unit 
of Å. The parameter α denotes the plane angle (from the top view) of the cross 
sub-nano rods as shown in Fig. 3(a), which is in unit of degree. The elastic 
constants C11, C22, C12, and C66 are obtained by Eq. (4). E, G, and υin represent 
the Young’s modulus, shear modulus, and in-plane Poisson’s ratio, respectively. 
All the elastic constants and moduli are in unit of GPa.  

VP Monolayer Bilayer Bulk  

op phase cp phase op phase cp phase op phase cp phase 

lx 8.89 11.10 9.03 11.07 9.10 11.23 
ly 9.00 6.60 8.89 6.72 8.92 6.73 
lz / / / / 20.56 21.36 
α 89.2 61.4 89.2 62.6 88.8 61.8 
C11 68.24 140.87 73.08 137.32 78.87 141.12 
C22 68.24 65.77 73.08 59.83 78.87 74.81 
C12 55.41 43.85 56.22 46.25 53.59 40.02 
C66 57.87 49.11 59.78 51.78 55.43 46.84 
E 23.25 111.63 29.84 101.56 42.45 119.71 
G 57.87 49.11 59.78 51.78 55.43 46.84 
υin 0.81 0.67 0.77 0.77 0.68 0.53  
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counterpart (68.24 GPa). The enhancement in C11 induced by phase 
transformation further leads to a much higher E in cp phase than that in 
op phase. As listed in Table 2, the Young’s moduli of monolayer, bilayer 
and bulk VP grow from 23.25, 29.84 and 42.45 GPa to 111.63, 101.56 
and 119.71 GPa, respectively, after the op-to-cp phase transformation. 
This phase transformation-induced strengthening effect also can be 
observed in the σx − ϵx curves shown Fig. 2(a), in which the slope of σx −

ϵx curve of cp phase at the initial tension stage is much larger than that of 
the op phase similarly at initial tension stage. In addition, the shear 
modulus of all VP structures is reduced after the phase transformation, 
while in this process a decrease of the in-plane Poisson’s ratio is 
observed in monolayer and bulk VP. 

From Fig. 4, it can be found that, consistent with their structures, the 
mechanical properties including E(θ), G(θ)), and υin(θ) of op and cp 
phases exhibit 4-fold and 2-fold rotation symmetries, respectively. 
Therefore, we only need to discuss the distribution of elastic properties 
within 0◦ ≤ θ ≤ 45◦ for op phase and those within 0◦ ≤ θ ≤ 90◦ for cp 
phase. The maximum value, minimum value, and corresponding 
anisotropy ratio of E(θ), G(θ), and υin(θ) extracted from Fig. 4 are listed 
in Table 3. Here, the anisotropy ratio is defined as the ratio of the 
maximum value to the minimum value. From Table 3, we can see that 
the changes in all mechanical properties after the op-to-cp phase 
transformation are qualitatively similar for monolayer, bilayer, and bulk 
VP, though a slight quantitative difference is observed among different 
VP materials. 

Regarding E(θ) of op phase, its maximum value Emax is found to 
locate at 45◦ that corresponds to the direction along sub-nano rods (see 

Fig. 3(a)), while its minimum value Emin is found at 0◦ that is the x axis. 
Specifically, Emax and Emin of op phase of monolayer VP are, respec-
tively, 119.56 GPa and 23.25 GPa, resulting in a significant anisotropy 
ratio of AE = 5.14. This significant anisotropy effect originates from the 
different deformation mechanisms of op phase of VP along these two 
directions. The deformation in the 45◦ direction is majorly attributed to 
the extension of bonds in the component sub-nano rods, i.e., -[P2]-[P8]- 
[P2]-[P9]- repeating units as shown in Fig. 1, which makes VP have the 
largest stiffness in this direction. The deformation along the 0◦ direction 
is mainly induced by the change of in-plane angle α as defined in Fig. 3 
(a), i.e., the relative rotation between cross rods. As a result, in this di-
rection VP will have a relatively small stiffness. The deformation 
mechanisms of VP will be further investigated in details in the section 
3.3. Similar to its op counterpart, Emax of the cp phase of VP is found at 
the directions along the sub-nano rods, i.e., now at θ ~ 30◦ as shown in 
Fig. 3(a). However, Emin of cp phase is found at the y direction of 90◦, 
which is totally different to the x direction of its op counterpart. It also 
can be found that, AE of the cp phase of monolayer, bilayer, and bulk VP 
is 2.45, 2.93, and 1.98, respectively, which is much smaller than the 
corresponding value of 5.14, 4.16, and 2.84 of op phase. This result 
demonstrates a distinct distribution of E(θ) between these two phases of 
VP. 

The op and cp phases of VP have the similar distribution of G(θ), 
which has the maximum at the x or y direction and the minimum at the 
direction of 45◦. But the anistropy of G(θ) is different for op and cp 
phases. Specifically, AG of op phase is in the range of 4.39 ~ 9.02, which 
is much higher than the value of its cp counterpart that ranges from 1.55 
to 2.47. The significantly lower AG of cp phase is mainly attributed to the 
much larger Gmin after the op-to-cp phase transformation. For instance, 
Gmin of monolayer VP within the cp phase is 25.95 GPa, which is four 
times larger than 6.42 GPa of its counterpart within the op phase. 

We find in Fig. 4 that υin is very close to zero at 45◦ for both op and cp 
phases of VP, which is especially apparent for the op phase of monolayer 
and bilayer VP with υmin being only 0.03 and 0.04, respectively. This 
near-zero Poisson’s ratio found in the specific in-plane direction of VP 
structures indicates that when VP is stretched or compressed in this 
direction, the length of its transverse direction can keep almost un-
changed. This zero in-plane Poisson’s ratio together with the afore-
mentioned negative out-of-plane Poisson’s ratio (see Fig. 2(d)) indicates 
that the VP structures are excellent auxetic 2D materials, which are thus 
expected to have widespread applications in fields such as medicine/ 
tissue engineering and aerospace [37,38]. The maximum Poisson’s ratio 
υmax of op and cp phases is found at the 0◦ (x axis) direction. Specifically, 
values of υmax are 0.81, 0.77, and 0.68 for the op phase of monolayer, 
bilayer and bulk VP structures, respectively, while the corresponding 

Fig. 4. Orientation-dependent (a) Young’s modulus E(θ), (b) shear modulus G(θ), and (c) in-plane Poisson’s ratio υin(θ) of monolayer, bilayer, and bulk VP structures 
obtained by Eq. (5). Here, the solid line and dash line denote the results of op and cp phases for each VP structure, respectively. 

Table 3 
The maximum value, minimum value, and anisotropy ratio of E(θ), G(θ), and 
υin(θ), which are extracted from Fig. 4 for op and cp phases of monolayer, 
bilayer, and bulk VP. The subscripts “max” and “min” denote the corresponding 
maximum value and minimum value, respectively. AE, AG, and Aυ denote the 
anisotropy ratio of E(θ), G(θ) and υin(θ), respectively. All elastic moduli are in the 
unit of GPa, while the others are dimensionless.  

VP Monolayer Bilayer Bulk  

op phase cp phase op phase cp phase op phase cp phase 

Emax 119.56 127.95 124.23 129.86 120.70 125.64 
Emin 23.25 52.13 29.84 44.26 42.45 63.67 
AE 5.14 2.45 4.16 2.93 2.84 1.98 
Gmax 57.87 49.11 59.78 51.78 55.43 46.84 
Gmin 6.42 25.95 8.43 20.98 12.64 30.26 
AG 9.02 1.97 7.09 2.47 4.39 1.55 
υmax 0.81 0.67 0.77 0.77 0.68 0.53 
υmin 0.03 0.11 0.04 0.06 0.09 0.16 
Aυ 24.56 5.96 19.62 13.63 7.66 3.24  

Penghua. Ying et al.                                                                                                                                                                                                                            



Materials Today Physics 27 (2022) 100755

7

values of their cp counterparts are 0.67, 0.77, and 0.53. These values are 
consistent with the results obtained from the tensile simulation as shown 
in Fig. 2(c). Moreover, the in-plane Poisson’s ratio of op phase of VP 
structures is found to generally decrease with increasing thickness. This 
thickness dependence of Passion’s ratio is attributed to the following 
mechanism. In bulk VP, the interaction between layers can constrain the 
out-of-plane deformation and further reduce the in-plane contraction 
along the y direction when it is stretched along the x direction, which 
finally leads to a relatively small υin. Due to the absence of neighboring 
layers, monolayer VP has more freedoms to deform in the out-of-plane 
direction, which results in a relatively large υin. The degree of 
out-of-plane constraints in bilayer VP structures is between that of their 
monolayer and bulk counterparts, leading to a υin between the values of 
monolayer and bulk VP as shown in Fig. 2(c). The similar mechanism 
was also demonstrated by Ref. [16] in the Bi2O2Se system. 

3.3. Extremely large in-plane Poisson’s ratio 

To shed light on the structural evolution of VP structures under 

tension and the accompanied phase transformation as discussed above, 
in this section the in-plane deformation mechanism of VP structures is 
investigated based on the geometry analysis together with the me-
chanical modeling. Efforts are made to reveal the origin of extremely 
large in-plane Poisson’s ratio found in VP structures under uniaxial 
tension. 

Considering the unique cross structure of VP whose component sub- 
nano rods are linked by [P9] units (see Fig. 1), a VP cell can be 
approximately treated as a mechanical framework. As shown in Fig. 5 
(a), in the framework model the sub-nano rods are treated as straight 
rods, while the [P9] unit is treated as the hinge linking two cross rods. 
Based on this mechanical framework model, the overall deformation of 
VP structures under tension is attributed to two deformation mecha-
nisms that are, respectively, elongation and rotation of rods. Assuming 
the elongation and rotation angle of rods are ds and dθ, respectively, we 
can obtain the following equations from the general Hooke’s law 

Fig. 5. (a) Illustration of the deformation mechanism of VP structures under tensile loading. Here, the tensile strain is attributed to two deformation modes including 
rotation and elongation. Here, F represents the tensile force acting on the framework, s represents the length of sub-nano rods along diagonal direction and θ is the in- 
plane angle between two cross diagonal rods. (b) The variation percentage of s and θ of mononlayer, bilayer, and bulk VP structures with respect to the tensile strain. 
The variation percentage of S and θ are, respectively, calculated as Δs/s and Δθ/θ. 
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Fs
2

cos(θ/2) = Ksds,

Fs
2

sin(θ/2) = Krdθ,
(8)  

where F is the total tensile force F acting on the framework, Fs
2 cos(θ /2)

and Fs
2 sin(θ /2) are, respectively, the stretching force and rotation 

moment acting on the rod components, and Ks and Kr are the generalized 
force constants. 

Meanwhile, the lengths of VP cell lx and ly in the x and y directions, 
respectively, are 

lx = scos(θ/2),
ly = ssin(θ/2). (9)  

From Eq. (9) we can further have 

dlx = cos(θ/2)ds −
s
2

sin(θ/2)dθ,

dly = dssin(θ/2) +
s
2

cos(θ/2)dθ.
(10)  

According to Eq. (2), the in-plane Poisson’s ratio υin contributed by the 
elongation and rotation of component rods can be written as 

υin = −
dly

/
ly

dlx/lx
= −

ds
/

s + 1
2 cot(θ/2)dθ

ds
/

s − 1
2 tan(θ/2)dθ

. (11)  

Specifically, when only considering the contribution of the elongation of 
rod components under the assumption of dθ = 0, υin = -1. In turn, when 
the contribution of elongation is excluded under the assumption of ds =
0, the in-plane Poisson’s ratio only due to the rotation of component rods 
is υin = -cot2 (θ/2). 

Fig. 5(b) illustrates the changes in length and rotation angle of the 
component sub-nano rods during the tension process of VP structures, 
which can be used to measure the contribution of elongation and rota-
tion to the overall deformation of VP structures in this process. Here, the 
value of θ is obtained by Eq. (3), while the value of s can be directly 

estimated as s =

̅̅̅̅̅̅̅̅̅̅̅̅̅

l2x + l2y
√

. As for all VP structures considered here, the 
changes in their θ and s are identical to each other. Specifically, under 
the initial deformation with a strain smaller than 0.2, θ increases linearly 
with growing strain, while s keeps almost unchanged in this process. 
However, when the strain grows greater than 0.2, a more significant 
increase is abruptly observed in s accompanied with a slower increase of 
θ, which makes the change in s become comparable to that in θ. This 
result reveals that at a strain smaller than 0.2, the deformation of VP 
structures is only dominated by the rotation of their component sub- 
nano rods. However, at a strain larger than 0.2, the elongation and 
rotation of sub-nano rods begin to contribute equally to the overall 
deformation of VP structures. 

The change in the deformation mechanism observed at the strain of 
0.2 can be explained as follows. In the entire tension process, θ decreases 
monotonically as the tensile strain increases. Meanwhile, the monotonic 
decrease and increase are, respectively, observed in the rotation 
moment Fs sin (θ/2) and the stretching force Fs cos (θ/2) as shown Eq. 
(8). Thus, at the beginning stage of the tension process with the largest θ 
around 45◦ as shown in Fig. 3(a), the rotation moment approximately 
equals to the stretching force. However, the deformation of VP struc-
tures under tension prefers the rotation rather than elongation of their 
component sub-nano rods, since the deformation is majorly governed by 
the deformation mode with a lower pathway energy [39]. As θ decreases 
with growing strain, the stretching force and the rotation moment will, 
respectively, increase and decrease during the tension process. Specif-
ically, at the strain of 0.2, the impact of the increased stretching force 
will become comparable to that of the decreased rotation moment. This 
competition between two deformation modes finally results in the 
change in the deformation mechanism of VP structures observed in 

Fig. 5(b). 
The deformation mechanism demonstrated here can be further 

adopted to explain the evolution of υin of VP structures under tension 
and the origin of extremely large υin observed at ϵx ≈ 0.2. When ϵx ⪅ 0.2, 
the deformation is fully dominated by rotation of the sub-nano rods. 
Thus, υin = - cot2 (θ/2) according to our model. Under this circumstance, 
υin increases from ∼ 1.0 to ∼ 2.46 as θ decreases from ∼ 90◦ to ∼ 65◦. 
This prediction is qualitatively similar to υin shown in Fig. 2(c) with 
different θ. However, υin obtained from DFT calculations that is in the 
range of ∼ 0.75 to ∼ 1.20 is much lower the theoretically predicted 
value. This quantitative difference can be understood by the fact that 
sub-nano rods assumed as rigid and straight rods in our mechanical 
model ignore the contributions of other distortions such as twist and 
bending in the realistic tension process; however, the twist and bending 
distortions can accommodate parts of the lateral deformation under 
uniaxial tension, which thus can dramatically reduce the magnitude of 
υin predicted by the mechanical model. When ϵx ⪆ 0.2, in addition to the 
rotation, the elongation of sub-nano rods also becomes another impor-
tant factor responsible for the deformation of VP structures. However, 
according to our model, the elongation of sub-nano rods corresponds to 
a constant negative υin of -1, leading to a synchronous reduction of υin as 
shown in see Fig. 2(c). 

In addition to υin, the deformation mechanism illustrated above can 
be also used to reveal the evolution of three stages in σx − ϵx curves 
shown in Fig. 2(a). At ϵx ⪅ 0.2 where the rotation of sub-nano rods 
dominates the overall deformation, the stress changes gently with varied 
strain. But at ϵx ⪆ 0.2 where the elongation of sub-nano rods starts to 
take part in the overall deformation, the stress becomes to sharply in-
crease with growing strain. We attribute this difference to the fact that 
the bond stretching of sub-nano rods is much harder than the rotation 
between sub-nano rods, corresponding to a much stiffer force constant 
Ks compared to Kr. This also explains why Young’s modulus of cp phase 
structures is much larger than that of their op phase counterparts (see 
Table 2). 

Accompanied by the phase transformation, an apparent negative- 
stiffness stage is found in all VP structures at 0.1 ⪅ ϵx ⪅ 0.2. From the 
U − ϵx curves shown in Fig. 2(b), it is observed that when 0.1 ⪅ ϵx ⪅ 0.2, 
VP deforms from a configuration with the maximum U, i.e., the energy 
barrier and finally to a new configuration with a minimum U, corre-
sponding to the new cp phase. The energy release during the transition 
process between aforementioned two deformation modes will induce a 
negative-stiffness behavior. To better explain the negative-stiffness 
behavior, in Fig. S2 (see supplementary materials) we show the 
change in the length of sub-nano rods s when the strain increases from 
0.05 to 0.25. When ϵx < 0.1 or ϵx > 0.2, s is found to increase as the 
tensile strain grows. However, an abnormal decrease of s with increasing 
strain is found at the negative-stiffness stage occurring at 0.1 ⪅ ϵx ⪅ 0.2, 
which signifies the buckling of sub-nano rods during the phase trans-
formation. In other words, the decrease of s induced by the mechanical 
instability during op-to-cp phase transformation results in the negative- 
stiffness behavior in VP structures. By virtue of their abnormal negative- 
stiffness behavior, the VP structures are expected to have applications as 
pressure sensors, artificial muscles, and actuators [40,41] in the future. 

The Young’s modulus E of parent phase of VP structures calculated in 
current work is less than 40 GPa (see Table 2), indicating an extremely 
flexible behavior of VP structures under uniaxial tension. Specifically, E 
of monolayer VP is estimated as 23.25 GPa, which is an order of 
magnitude lower than other monolayer 2D materials such as 1 TPa of 
graphene with an equivalent thickness of 3.40 Å [42], 295.57 GPa of 
MoS2 with an equivalent thickness of 6.09 Å [43], and 407.62 GPa of 
black phosphorene with an equivalent thickness of 5.25Å [44]. As we 
explained above, this extremely flexible behavior of VP originates from 
the rotation between cross sub-nano rods without bond stretching at the 
initial stage of uniaxial tension process. It is noticed that, in a very recent 
experiment [5], E of monolayer VP measured by AFM-based nano-
indentation is 1.47 TPa, which is much larger than the value (1 TPa) of 
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graphene that is recognized as the strongest material. Herein, we attri-
bute this significant difference between E obtained from the present 
calculations and previous experiments to the strongly anisotropic me-
chanical response of VP structures under different loading conditions. 
Due to its complex cross structures demonstrated previously by Zhang 
et al. [5], VP shows an extremely large deformation resistance with 
respect to the (out-of-plane) normal loading, which may lead to the very 
high E measured in the nanoindentation experiments [5]. However, 
when under the (in-plane) uniaxial loading, the overall deformation is 
caused by the rotation of sub-nano rods as demonstrated above, which 
results in an ultrahigh flexibility property and correspondingly a very 
low E. Therefore, the value of 23.25 GPa calculated here and the value of 
1.47 TPa obtained from the previous nanoindentation experiments 
actually correspond to Young’s modulus of monolayer VP under in-plane 
tension and out-of-plane bending, respectively. The significantly 
different abilities of VP to resist stretching and bending deformations 
make VP be a stretchable but impact-resistant material, which will open 
the doors to the design of novel structural and functional materials in the 
future. 

3.4. Negative out-of-plane Poisson’s ratio 

We have demonstrated that both bilayer and bulk VP structures have 
auxetic properties, i.e., negative υout, when the strain is larger than a 
critical value (see Fig. 2(d)). The maximum magnitude of υout ultimately 
can reach -0.32 for bulk VP, while the maximum value is -0.11 for 
bilayer VP. In this section, the underlying mechanism of auxetic prop-
erties found in VP structures is revealed based on geometry analysis 
together with the orbital theory. 

As shown in Fig. 6(a), the overall out-of-plane deformation contains 
two parts including the variation of intra-layer spacing t and that of 
inter-layer spacing d. Specifically, it is emphasized that the atoms in 
individual [P9] units (as highlighted in Fig. 6) can form the covalent 
bonds, which result in the intra-layer spacing. These atoms can move 
like a hinge facilitating the rotation of two connected sub-nano rods, 
which thus plays a very important role in the auxetic phenomenon of 
bilayer and bulk VP structures. 

To show the underlying mechanism of the variation of intra-layer 
spacing t, in Fig. 6(b) we specifically illustrate the hinge structure 
composed of six atoms, in which the sub-nano rods are represented by 
red dash lines. We find that the linked bond composed of atoms 2 and 5 

(in blue) deviates from the central axis of rotation, which is represented 
as the purple dash line connecting midpoints of 1–3 bond and 4–6 bond 
(in yellow). Under this circumstance, the tension along the x axis would 
lead to the in-plane rotation. Specifically, atoms 1 and 3 would rotate 
clockwise around the central axis, while atoms 4 and 6 would rotate 
counterclockwise around the central axis. The in-plane rotation of these 
atoms is also accompanied with the movement of atoms 2 and 5 along 
two opposite directions, which further leads to the rotation of 2–5 bond 
vertically, i.e., parallel to the central axis. This rotation finally results in 
the increment of intra-layer spacing t (see right part of 6(b)) and thus a 
negative υout. 

Besides the variation of intra-layer spacing t, the negative υout can be 
also induced by the inter-layer Pauli repulsion, i.e., the variation of 
inter-layer spacing d as shown in Fig. 6(c). It is found that the rotations 
of 2–5 bonds locating at the upper and lower layer are in opposite di-
rections as shown by the blue arrows, which further leads to the slip of 
sub-nano rods near the spacing d (black arrows). Since the P atom in all 
VP structures has a fully filled pz orbital, the slip phenomenon shown in 
Fig. 6(c) is accompanied with the large overlap of pz orbitals, which 
finally results in the increment of spacing d and thus a negative υout. 

Although both bilayer and bulk VP structures exhibit the negative 
υout under tension, as shown in Fig. 2(d), the variation of υout of bulk VP 
during the tension process is discontinuous at ϵx ≈ 0.24 accompanied by 
a step rise, which is distinct from the continuous change of υout of bilayer 
VP. To understand the origin of the step rise observed in the υout of bulk 
VP, in Fig. 7(a) we show the relative atomic displacements of bulk VP 
structures at different strains. From Fig. 7(a) it can be seen that the 
relative change between atomic displacements at ϵx of 0.24 and 0.23 is 
trivial. The similar trivial atomic displacement change is also found 
between the structures at ϵx of 0.26 and 0.25. However, an interlayer slip 
process accompanied with the significant relative atomic displacements 
is found between the structures at ϵx of 0.25 and 0.24. In Fig. 7(b), we 
further compare the average value of relative atomic displacement of 
monolayer, bilayer, and bulk VP during the whole tension process. It is 
found that the variation of atomic displacement of bilayer and mono-
layer VP in this process is generally smooth, while one peak locating at 
ϵx of 0.24 is observed in bulk VP, which corresponds to the interlayer slip 
as shown in Fig. 7(a). As for bulk VP, the interaction between layers 
restricts the smooth motion of interlayer atoms existing in monolayer 
and bilayer VP structures (see Fig. 7(b)). The resulting energy barrier in 
bulk VP finally leads to a maximum value of negative υout = -0.32 before 

Fig. 6. (a) The illustration of the out-of-plane Poisson’s ratio υout of bilayer and bulk VP structures contributed by the variation of intra-layer spacing t and inter-layer 
spacing d. Here, the atoms forming linked bonds through intra-layer spacing are highlighted in blue, while the atoms connecting the blue bonds and sub-nano rods 
are highlighted in yellow. (b, c) The illustration of intra-layer rotation and inter-layer Pauli repulsion deformation. 
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the abrupt slip process. 
In order to further understand the physical source of the negative 

Poisson’s ratio phenomenon, we calculated the energy band structures 
of monolayer, bilayer and bulk VP. When the strain is absent, the 
contribution of the pz orbital of P atom dominates near the Fermi level 
(see op phase in Fig. 8(a–c)), and there is no strong interaction between 
the pz orbital and other orbitals. With the increase of tensile strain, the 
contribution of the py orbital increases rapidly near the Fermi level (see 
cp phase in Fig. 8(a–c)). pz and py orbitals show a strong hybridization. 
Simultaneously, VP shows a significant negative Poisson’s ratio phe-
nomenon. According to the previous study, pz orbitals will extend to the 
out-of-plane direction when the VP is under the in-plane tensile strain ϵx. 
The charge density-weighted length Lz of the pz orbital in the out-of- 
plane direction is λz(ϵx) = lpz f(ϵx), where lpz is the length of the iso-
lated pz orbital. ∂f (ϵx)/∂ϵx > 0 represents the influence of strain on the pz 
orbital [45,46]. In addition, because VP possesses a structure much more 
complicated than that of other flat 2D structures such as graphene, the 
interaction between pz and py orbitals becomes stronger when the VP is 

stretched along the x direction, resulting in the negative Poisson’s ratio 
effect. This further reveals the microscopic origin of the negative Pois-
son’s ratio in VP structures from the perspective of quantum theory, as 
illustrated in Fig. 6(b). Moreover, by using the tight-binding method, the 
interaction could be further identified to quantitatively describe the 
effect of the interaction between pz and py orbitals on the negative 
Poisson’s ratio [30]. 

In addition, we also find that when the VP possesses a negative 
Poisson’s ratio, the conduction band and the valence band gradually 
overlap with each other as the strain increases, which leads to the 
disappearance of the band gap and thus the semiconductor-to-metal 
transition as shown in Fig. 8(d). The corresponding high symmetry 
points together with the Brillouin zones employed here are illustrated in 
Figs. S3–S5 (see supplementary materials). Therefore, VP is a meta- 
material that possesses both negative Poisson’s ratio and 
semiconductor-to-metal transition when under tension. The band gaps 
of monolayer, bilayer, bulk VP without strain are predicted to be 1.50 
eV, 1.39 eV, and 1.05 eV, respectively. The critical uniaxial strain of 

Fig. 7. (a) Relative atomic displacement of bulk VP structure at strains of 0.24 (left), 0.25 (middle), and 0.26 (right). The atoms are colored from blue to red ac-
cording to their corresponding displacement magnitudes. The yellow arrows show the atomic displacement vectors. The atomic displacement is in the unit of Å. Here, 
the displacement vectors are not shown in the structures at strains of 0.24 and 0.26 because their magnitudes are extremely small. (b) The average value of relative 
atomic displacement of monolayer, bilayer, and bulk VP as a function of uniaxial tensile strain ϵx. 
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semiconductor-to-metal transition for monolayer, bilayer, and bulk VP 
are 0.44, 0.32, and 0.34, respectively. The semiconductor-to-metal 
transition usually results in significant changes in physical properties 
such as resistivity, magnetism, optical reflectivity, etc [47]. These 
unique physical properties together with the negative Poisson’s ratio 
makes VP have broad application prospects in the fields of piezoelec-
tricity, information storage, sensors, field effect transistors and so on 
[40,48,49]. 

4. Conclusion 

In summary, DFT calculations are performed to comprehensively 
investigate the mechanical responses of monolayer, bilayer and bulk VP 
under uniaxial tension. In addition, the mechanical properties including 
tensile strength, fracture strain, Young’s modulus, and Poisson’s ratio of 
VP structures are examined. Our results show a unique phase trans-
formation from op structure to cp structure occurring in the VP, which is 

induced by the change of deformation mechanisms of VP during the 
loading process. The effect of phase transformation on the elastic 
properties of VP structures are investigated in details. A very strong 
anisotropy of elastic properties including Young’s modulus, shear 
modulus, and Poisson’s ratio are found in both op and cp phases of VP 
structures. Specifically, we find that both op and cp phases of all VP 
structures possess a zero Poisson’s ratio in a specific in-plane angle. 
Moreover, an extremely large in-plane Poisson’s ratio and a negative 
out-of-plane Poisson’s ratio are found in the VP structures subject to 
certain strain. In addition, a semiconductor-to-metal transition phe-
nomenon is observed in all VP strictures under tensile loading. 

Data availability 

Representative input files for DFT calculations are available online in 
our data repository at https://github.com/hityingph/supporting-info/. 
The raw data that support the findings of this study are available from 

Fig. 8. Band structures of (a) monolayer, (b) bilayer and (c) bulk VP under zero strain (op phase), strain of the maximum negative υout (cp phase), and strain of 
semiconductor-to-metal transition (metallic phase), respectively. The green, blue, and orange lines represent the contributions of the px, py, and pz orbitals, 
respectively. (d) Band gap of monolayer, bilayer, and bulk VP as a function of tensile strain ϵx, which indicates the semiconductor-to-metal transition. 
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