
International Journal of Heat and Mass Transfer 202 (2023) 123681 

Contents lists available at ScienceDirect 

International Journal of Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/hmt 

Variable thermal transport in black, blue, and violet phosphorene 

from extensive atomistic simulations with a neuroevolution potential 

Penghua Ying 

a , Ting Liang 

b , Ke Xu 

c , Jianbin Xu 

b , Zheyong Fan 

d , e , ∗, Tapio Ala-Nissila 

e , f , 
Zheng Zhong 

a , ∗

a School of Science, Harbin Institute of Technology, Shenzhen, 518055, PR China 
b Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong 

Kong SAR, 999077, PR China 
c Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft 

Functional Materials Research, Xiamen University, Xiamen, 361005, PR China 
d College of Physical Science and Technology, Bohai University, Jinzhou, 121013, PR China 
e MSP group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-0 0 076 Aalto, Espoo, Finland 
f Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 

3TU, UK 

a r t i c l e i n f o 

Article history: 

Received 28 June 2022 

Revised 3 November 2022 

Accepted 17 November 2022 

Available online 25 November 2022 

Keywords: 

Phosphorene 

Neuroevolution potential 

Homogeneous nonequilibrium molecular 

dynamics 

Thermal conductivity 

Phonon transport 

a b s t r a c t 

Phosphorus has diverse chemical bonds, and even in its two-dimensional form, there are three stable 

allotropes: black phosphorene (Black-P), blue phosphorene (Blue-P), and violet phosphorene (Violet-P). 

Due to the complexity of these structures, no efficient and accurate classical interatomic potential has 

been developed for them. In this paper, we develop an efficient machine-learned neuroevolution potential 

model for these allotropes and apply it to study thermal transport in them via extensive molecular dy- 

namics (MD) simulations. Based on the homogeneous nonequilibrium MD method, the thermal conduc- 

tivities are predicted to be 12 . 5 ± 0 . 2 (Black-P in armchair direction), 78 . 4 ± 0 . 4 (Black-P in zigzag direc- 

tion), 128 ± 3 (Blue-P), and 2 . 36 ± 0 . 05 (Violet-P) Wm 

−1 K 

−1 . The underlying reasons for the significantly 

different thermal conductivity values in these allotropes are unraveled through spectral decomposition, 

phonon eigenmodes, and phonon participation ratio. Under external tensile strain, the thermal conduc- 

tivity in black-P and violet-P are finite, while that in blue-P appears unbounded due to the linearization 

of the flexural phonon dispersion that increases the phonon mean free paths in the zero-frequency limit. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Phonon thermal transport in two-dimensional (2D) materials 

xhibits unique properties that are absent in the bulk form [1] . 

fter the discovery of the high thermal conductivity of graphene 

2] , thermal transport in other 2D materials has been actively stud- 

ed. Among them, 2D phosphorene occupies a special role as there 

re three stable allotropes: black phosphorene (Black-P), blue phos- 

horene (Blue-P), and violet phosphorene (Violet-P) [3,4] . These al- 

otropes have very different crystalline structures: Black-P has an 

nisotropic orthorhombic structure with four atoms in the primi- 

ive cell ( Fig. 1 (a)); Blue-P has a honeycomb structure buckled per- 

endicular to the 2D plane with two atoms in the primitive cell 

 Fig. 1 (b)); while Violet-P has a very complicated tubular struc- 
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ure with 42 atoms in the primitive cell ( Fig. 1 (c)). All the three

llotropes are semiconductors with direct electronic bandgaps 

4–6] . Therefore, phonons are the major heat carriers and phonon- 

ominated thermal transport in them is of great interest. 

Precise measurement of the thermal conductivity κ of 2D ma- 

erials is quite challenging. For Black-P, only multi-layer samples 

hicker than 5 nm have been measured [8,9] and there are so far 

o measurements for the other two allotropes. In this regard, com- 

utational methods play an important role in characterizing the 

honon-mediated thermal transport properties in these allotropes. 

oltzmann transport equation (BTE), combined with anharmonic 

attice dynamics (ALD) has been the major tool for studying 

eat transport in various materials [10–12] . There have been 

uite a few BTE-ALD studies for both Black-P [13–16] and Blue-P 

13,15–17] . However, the BTE-ALD method quickly becomes compu- 

ationally infeasible when the primitive cell contains a large num- 

er of atoms, which explains the absence of the application of it 

o Violet-P. Perhaps the most feasible method for complex crys- 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123681
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123681&domain=pdf
mailto:brucenju@gmail.com
mailto:zhongzheng@hit.edu.cn
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123681
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Fig. 1. Crystal structures of (a) Black-P (b) Blue-P and (c) Violet-P. The in-plane 

primitive cell vectors a 1 and a 2 are indicated. Black-P and Blue-P have two distinct 

directions that are referred to as the armchair and zigzag directions chosen to be 

aligned with the x and y axes, respectively. The ovito package [7] is used for visu- 

alization. 
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als is based on molecular dynamics (MD) simulations which also 

ccount for phonon anharmonicity to arbitrary order and contain 

honon coherence effects. However, the application of MD simu- 

ation to phonon thermal transport in the phosphorene allotropes 

as been hindered by the lack of accurate, efficient and transfer- 

ble interatomic potentials. 

Recently, machine-learned potentials (MLPs) have been demon- 

trated to be a promising approach to enable reliable MD simu- 

ations with a reasonable computational cost [18] . A Gaussian ap- 

roximation potential (GAP) [19] for many phosphorus allotropes 

as already been developed [20] and has been shown to be very 

ccurate and transferable, but the efficiency of this GAP model 

s currently not high enough to be used to study phonon ther- 

al transport in the phosphorene allotropes via MD simulations. 

nother MLP framework developed by some of the present au- 

hors called the neuroevolution potential (NEP) [21–23] has been 

hown to have much higher computational efficiency while achiev- 

ng comparable accuracy. In this paper, we use part of the train- 

ng data as used for the GAP model [20] to train an accurate and

ighly efficient NEP model and use it to comprehensively charac- 

erize the versatile and highly varying phonon thermal transport 

roperties of the 2D phosphorene allotropes, revealing the under- 

ying phonon transport mechanisms and the crucial roles played by 

xternal strain in regularizing the heat transport in these materials. 

. Training and validating a NEP model for phosphorene 

NEP [21–23] is a type of MLP based on a neural network (NN) 

nd is trained using the separable natural evolution strategy (SNES) 

24] . A number of atom-environment descriptor components of a 

entral atom are used as the input layer of the NN and the energy

f the central atom is taken as the output of the NN, which is the

ame as in the standard Behler-Parrinello high-dimensional NN po- 

ential [25] . The site energy U i of atom i is taken as a function of

 des descriptor components. To model this function, a feedforward 

N with a single hidden layer with N neu neurons is applied: 

U i = 

N neu ∑ 

μ=1 

w 

(1) 
μ tanh 

( 

N des ∑ 

ν=1 

w 

(0) 
μν q i ν − b (0) 

μ

) 

− b (1) , (1) 

here w 

(0) , w 

(1) , b 

(0) , and b (1) are the trainable weights and bias

arameters in the NN and tanh (x ) is the activation function. 

The descriptor consists of both radial and angular components 

nd is constructed based on Chebyshev and Legendre polynomi- 

ls (or spherical harmonics via the addition theorem), inspired by 
2 
revious works [25,26] . For a central atom i , there is a set of radial

escriptor components { q i n } ( 0 ≤ n ≤ n R max ): 

q i n = 

∑ 

j � = i 
g n (r i j ) , (2) 

nd a set of angular descriptor components { q i 
nl 
} ( 0 ≤ n ≤ n A max and

 ≤ l ≤ l max ): 

q i nl = 

2 l + 1 

4 π

∑ 

j � = i 

∑ 

k � = i 
g n (r i j ) g n (r ik ) P l ( cos θi jk ) . (3) 

ere the summation runs over all the neighbors of atom i within 

 certain cutoff distance. P l ( cos θi jk ) is the Legendre polynomial of 

rder l and θi jk is the angle formed by the i j and ik bonds. 

The radial function g n (r i j ) in Eqs. (2) and (3) are defined as: 

g n (r i j ) = 

c ni j 

2 

[ 
T n 

(
2 

(
r i j /r c − 1 

)2 − 1 

)
+ 1 

] 
f c (r i j ) . (4) 

ere, T n (x ) is the n th order Chebyshev polynomial of the first kind 

nd f c (r i j ) is the cutoff function defined as 

f c (r i j ) = 

{
1 
2 

[
1 + cos 

(
π

r i j 

r c 

)]
, r i j ≤ r c ;

0 , r i j > r c . 
(5) 

he cutoff radius r c for the radial and angular descriptor compo- 

ents can be different, and are denoted as r R c and r A c , respectively. 

he coefficients c ni j are trainable parameters that depend on the 

ypes of the atoms i and j. The choice of the hyperparameters r R c ,

 

A 
c , n 

R 
max , n 

A 
max , and l max will be discussed below. The total number

f descriptor components is N des = (n R max + 1) + (n A max + 1) l max . 

The training data we used consist of the 2D phosphorene struc- 

ures as constructed by Deringer et al. [20] and 60 extra ones (20 

or each of the three allotropes) with 0.1 Å random displacements 

or each atom starting from the equilibrium structures. For the 

0 extra structures, we performed density functional theory (DFT) 

alculations that are consistent with those in Ref. [20] , using the 

erdew-Burke-Ernzerhof functional [27] plus the many-body dis- 

ersion (MBD) [28,29] , and the projector-augmented wave method 

30] as implemented in vasp [31,32] . All the calculations were con- 

erged with an energy tolerance of 10 −8 eV under an energy cut- 

ff of 500 eV. Finally, our training data set contains 2139 struc- 

ures (51191 atoms in total) including nanoribbons, 2D structures, 

nd bulk structures, and each structure has energy, force, and virial 

ata. The trained NEP model is tested against a hold-out dataset 

onsisting of 309 2D phosphorene structures (3468 atoms in total). 

The NEP model was trained using the gpumd package (version 

.3.1) [23,33] , choosing the NEP2 version. The cutoff radii for the 

adial and angular descriptor components are r R c = 8 Å and r A c = 5 
˚ , respectively. We note that with a large radial cutoff distance of 

 

R 
c = 8 Å, we do not need to include an empirical dispersion in- 

eraction term (such as a Lennard-Jones potential) explicitly to ac- 

ount for the van der Waals interactions. The Chebyshev polyno- 

ial expansion order for the radial and angular descriptor com- 

onents are n R max = 15 and n A max = 10 , respectively. The Legendre 

olynomial expansion order for the angular descriptor components 

s l max = 4 . The number of neurons in the hidden layer of the NN

s N neu = 40 . 

A loss function to be minimized is defined as follows: 

L = λ1 L 1 + λ2 L 2 + λe �U + λf �F + λv �W (6) 

here �U , �F , and �W are the root mean square errors (RMSEs) 

f energy, force, and virial, respectively, between the predicted and 

he reference values, L 1 and L 2 are proportional to the 1-norm and 

-norm of the training parameters, and λe , λf , λv , λ1 , λ2 are the 

eights of the various terms. We choose λ1 = λ2 = 0 . 05 , λe = λf =
 , and λv = 0 . 1 . The population size and number of generations in

he SNES algorithm [24] are N pop = 50 and N gen = 2 × 10 5 . 
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Fig. 2. (a) Evolution of various terms in the loss function for the training data set 

with respect to the generation in the SNES algorithm. (b) Energy, (c) force, and (d) 

virial calculated from NEP as compared to the reference data for the testing data 

set. The lines in (b)–(d) represent the identity function used to guide the eyes. 

Table 1 

A comparison between lattice constants of 2D phosphorene allotropes 

predicted by NEP, GAP [20] , and DFT-MBD approaches. 

Allotrope Black Blue Violet 

Lattice constant ( ̊A) a 1 a 2 a 1 a 2 a 1 a 2 
NEP 4.39 3.30 3.26 3.26 9.11 9.18 

GAP 4.47 3.15 3.22 3.22 9.14 9.20 

DFT-MBD 4.33 3.31 3.26 3.26 9.12 9.18 
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In Fig. 2 (a) we show the evolution of various terms in the loss 

unction with respect to the SNES generation during the train- 

ng process. With N gen = 2 × 10 5 generations, the RMSEs of energy, 

orce, and virial are essentially converged. In Fig. 2 (b)–(d) we com- 

are the energy, force, and virial predicted by the NEP model and 

hose from DFT calculations for the testing data set. The RSMEs of 

nergy, force, and virial are 5.1 meV/atom, 75.4 meV/ ̊A, and 73.1 

eV/atom, respectively. As a comparison, we note that the RMSEs 

f energy and force from GAP (virial RMSE is not available) for the 

D structures are 2.0 meV/atom and 70.0 meV/ ̊A, respectively [20] . 

NEP as implemented in gpumd attains a much higher compu- 

ational performance than GAP [20] as implemented in quip and 

nterfaced with LAMMPS (version 14Dec2021) [34] . The computa- 

ional speed is measured by running MD simulations for 100 steps 

n the isothermal ensemble, using 19200, 14040, and 32928 atoms 

or Black-P, Blue-P, and Violet-P, respectively. From Fig. 3 , we see 

hat the computational speed of NEP using a single Nvidia RTX 

090 GPU card is of the order of 10 7 atom-step per second, which 

s more than three orders of magnitude higher than that of GAP 

sing 64 AMD EPYC 7452 CPU cores (two nodes, each with 32 

ores). The high computational efficiency of NEP is crucial for its 

pplication to thermal transport calculations, which require exten- 

ive sampling of the phase space. To be exact, the whole MD sim- 

lations in this paper took about 10 0 0 h using a single Nvidia RTX

090 GPU card. 

Table 1 compares the lattice constants of Black-P, Blue-P, and 

iolet-P (see Fig. 1 for the definitions of the lattice constants) pre- 

icted by our NEP model with those predicted by DFT-MBD cal- 

ulations and the previous GAP model [20] . Our NEP model can 

redict the lattice constants of the 2D phosphorene allotropes very 
3

ell, with a relative error being of the order of 0 . 1% in most cases

nd 1% for a 1 in Black-P. 

The primitive cells of Black-P, Blue-P, and Violet-P are 4, 2, and 

2, respectively, leading to 12, 6, and 126 phonon branches, re- 

pectively. Despite the very different phonon dispersions, our NEP 

odel can well describe them simultaneously, exhibiting a level of 

ccuracy similar to the GAP model, as can be seen from Fig. 4 . This

s beyond the reach of any current empirical potential. For Blue-P, 

he frequencies around the M and K points are overestimated as 

ompared to DFT-MBD, but those around the � point are well de- 

cribed. The complex phonon dispersions of Violet-P are also rea- 

onably described by NEP, which even behaves more nicely around 

he � point than DFT-MBD which suffers from some numerical is- 

ues. 

We note that there is a phonon band gap with 2.6 THz (7.9 

o 10.5 THz) in Black-P and one with 4.6 THz (7.7 to 12.3 THz) 

n Blue-P, while there is no evident gap in Violet-P. In the case 

f Violet-P which has a large unit cell, there are flat bands at 

ower frequencies, and significant overlap between multiple bands 

n which case approaches based on the linearized BTE are expected 

o fail [37] . Based on the phonon band picture we expect the low 

roup velocities and multiple scattering channels in Violet-P to 

ead to a low value of thermal conductivity. 

Before detailed calculations, we can also infer some interesting 

roperties based on the acoustic branches. In Black-P, the acoustic 

ranches are much higher in the �-X (zigzag) direction than in the 

-Y (armchair) direction (see Fig. 4 (a)), leading to higher group ve- 

ocities in the zigzag direction ( Fig. 4 (d)), which is one of the ori-

ins of the highly anisotropic phonon transport in Black-P. In the 

ther two allotropes, there is no such anisotropy. As mentioned 

bove, the acoustic branches of Violet-P are much flatter than 

hose of the other two allotropes, leading to much lower phonon 

roup velocities (see Fig. 4 (d)). This is also related to the flexibility 

f Violet-P under deformation, which is caused by a unique defor- 

ation mode, namely rotation of sub-nano rods [38] . 

. Phonon thermal transport in phosphorene allotropes 

For a quantitative study we computed the thermal conductiv- 

ty using the homogeneous non-equilibrium molecular dynamics 

HNEMD) method [39,40] . In this method, an external force is ap- 

lied to each atom i to drive the system out of equilibrium. The 

xternal force F ext 
i can be written in terms of the per-atom energy 

 i and virial tensor W i as follows [41] : 

F ext 
i = E i F e + F e · W i , (7) 

here F e is the driving force parameter with the dimension of in- 

erse length. The driving force will induce a nonequilibrium heat 

urrent J(t) as a function of time t that is linearly proportional to 

 e = | F e | , 
κ(t) = 

J(t) 

T V F e 
, (8) 

here κ(t) is the instant thermal conductivity, V is the volume, 

nd T is the temperature. In the calculation of V , the thicknesses 

f Black-P [42] , Blue-P [6] , and Violet-P [4] are respectively taken 

s 5.25 Å, 5.63 Å, and 11.00 Å. The temperature needs to be main-

ained by using a thermostat, and to this end, we use the Nosé- 

oover chain thermostat with a relaxation time of 100 fs. In all 

ur MD simulations, a time step of 1 fs is used. The in-plane sim- 

lation cell size is set to 25 nm × 25 nm which is sufficiently large

ased on our tests. 

To check the convergence of κ(t) , it is conventional to redefine 

he thermal conductivity as [40] : 

κ(t) = 

1 

t 

∫ t J(τ ) 

T V F 
dτ. (9) 
0 e 
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Fig. 3. A comparison of the computational speed of NEP-GPUMD (running with an 

Nvidia RTX 3090 GPU card) and GAP-LAMMPS (running with 64 AMD EPYC 7452 

CPU cores) for the 2D phosphorene allotropes. We note that there are two versions 

of GAP in Ref. [20] , and we used the faster one without the dispersion part to give 

a fair comparison with our NEP model. 
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he magnitude of the driving force parameter F e should be small 

nough to keep the system within the linear response regime and 

arge enough to keep a reasonably large signal-to-noise ratio. An 

pper bound of F e = 1 /λmax has been suggested [40] , where λmax 

s the maximum phonon mean free path in the system, as will be 

urther confirmed below. 

For the κ(t) obtained by using Eq. (9) in HNEMD simulations, 

e set F e = 0 . 1 μm 

−1 for Blue-P ( Fig. 5 (c)-(d)) and F e = 1 . 0 μm 

−1 

or Black-P ( Fig. 5 (a)-(b)) and Violet-P ( Fig. 5 (e)–(f)). We performed

en independent runs, each with a 100 ps equilibration stage in 

he isothermal-isobaric ensemble (with a target in-plane pressure 

f zero and a target temperature of 300 K), and after that, a 2-ns

roduction stage for black and Violet-P, or a 5-ns production stage 

or Blue-P. 

In Fig. 5 , we decompose [40] κ in to contributions form in- 

lane ( κin ) and out-of-plane (flexural) ( κout ) phonon modes, κ = 

in + κout . For all the allotropes, κin dominates, which means that 

exural phonons are not the major heat carrier in phosphorene. 

mong the three allotropes, Blue-P has the highest thermal con- 

uctivity 128 ± 3 Wm 

−1 K 

−1 , which is about two orders of mag- 

itude higer than that in Violet-P ( 2 . 36 ± 0 . 05 Wm 

−1 K 

−1 ). While

hese two allotropes is isotropic for in-plane heat transport, Black- 

 exhibits strong anisotropy, with κ in the zigzag direction ( 78 . 4 ±
 . 4 Wm 

−1 K 

−1 ) being about six times as large as that in the arm-

hair direction 12 . 5 ± 0 . 2 W m 

−1 K 

−1 . Both the strong anisotropy

nd the magnitudes of the thermal conductivity in Black-P and 

lue-P are well consistent with the existing BTE-ALD predictions 

ased on DFT-based force constants [14–17] . While the simulta- 

eous description of two or more distinct structures is generally 

eyond the capability of empirical potentials, the results here sug- 

est that our NEP model has this capability. For the most com- 

lex allotrope, Violet-P, the BTE-ALD approach is computationally 

nfeasible and we thus have a prediction for its thermal conduc- 

ivity for the first time. As suggested by the phonon band pic- 

ure, its magnitude is among the smallest found for elementary 

rystals. 

To get more insight in the physical mechanisms behind the 

ighly variable phonon transport in 2D phosphorene, we used 

he spectral decomposition techniques in Refs. [40,41] to calcu- 

ate the diffusive spectral thermal conductivity κ(ω) and the bal- 

istic spectral thermal conductance G (ω) , as shown in Fig. 6 (a) 

nd (b), respectively. From κ(ω) and G (ω) , one can read- 

ly calculate the frequency-dependent phonon mean free path 

MFP) [40] : 

λ(ω) = κ(ω ) /G (ω ) , (10) 
4 
s shown in Fig. 6 (c). Then, one can obtain the thermal conductiv- 

ty at any length L [40] , 

κ(L ) = 

∫ ∞ 

0 

dω 

2 π

κ(ω) L 

L + λ(ω) 
, (11) 

s shown in Fig. 6 (d). 

The phonon band gaps in Fig. 4 are also manifested in the spec- 

ral quantities here. For all the allotropes, κ gets it main contri- 

ution from the acoustic phonon branches. The maximum phonon 

FP λmax in all the allotropes is located at the low-frequency 

imit, reaching about 10 4 nm in Blue-P, 10 3 nm in the zigzag di- 

ection of Black-P, and 10 2 nm in Violet-P and the armchair direc- 

ion of Black-P. These results are well consistent with our choice 

f the driving force parameter F e that ensures F e λmax � 1 . Consis- 

ent with the different MFPs, the allotropes exhibit different con- 

ergence rates of κ(L ) with increasing L . It requires more than 10

icrons to reach 90% of the diffusive κ in Blue-P, while only re- 

uires a few hundred nanometers to reach 90% of the diffusive κ
n Violet-P. 

From Fig. 6 (c), we see that the phonon MFPs in Violet-P are 

maller than 10 nm for ω/ 2 π � 1 THz. This indicates that most of

he phonon modes in Violet-P are relatively more localized as com- 

ared to Black-P and Blue-P, which can be confirmed by the optical 

honon eigenmodes at the � point shown in Fig. 7 , obtained us- 

ng the method in Ref. [43] . In both Black-P and Blue-P, the optical

igenmodes at relatively high frequencies exhibit collective move- 

ents of the atoms. In contrast, the optical eiginmodes in Violet- 

 only show collective behavior below 1 THz, and random move- 

ents of the atoms starting from 1.2 THz. This indicates that the 

honon modes in Violet-P are localized for ω/ 2 π � 1 THz. 

Phonon localization can be quantified by the phonon participa- 

ion ratios (PPR) [44] defined as 

R (ω) = 

1 

N 

(∑ 

i ρ
2 
i 
(ω) 

)2 

∑ 

i ρ
4 
i 
(ω) 

, (12) 

here ρi (ω) is the phonon density of states of atom i and N is the

otal number of atoms involved in the calculation. A value of R = 1

epresents a totally de-localized mode, and a smaller value cor- 

esponds to a stronger localization. Fig. 8 shows that the phonon 

odes in Black-P and Blue-P are essentially de-localized up to the 

aximum frequency, while those in Violet-P are relatively more lo- 

alizated as its PPR is significantly smaller than unity, particularly 

or high frequencies. 

In Fig. 9 we show the temperature-dependent κ for the three 

hosphorene allotropes. Black-P and Blue-P largely follow a typi- 

al T −1 dependence of κ as dominated by three-phonon scattering 

rocesses. However, Violet-P exhibits a clearly weaker temperature 

ependence, κ ∼ T −0 . 59 , which suggests the importance of high- 

rder anharmonicity as in low- κ materials [45] 

An interesting observation in graphene [46,47] and graphene- 

ike 2D materials [4 8,4 9] is that the thermal conductivity might be 

ot upper bounded or increase significantly under external strain. 

ere we use the HNEMD method to examine this issue for the 

hosphorene allotropes. For Black-P, we apply a 4% uniaxial tensile 

train in the armchair or zigzag direction. For Blue-P and Violet- 

, we apply 2% biaxial tensile strain. Our augment below relies on 

he criteria of F e λmax � 1 for keeping the system within the linear- 

esponse regime in the HNEMD simulations. In this case, the κ(t) 

efined in Eq. (9) should converge in the long-time limit. In all the 

ases we perform HNEMD simulations up to a long time of 20 ns, 

hich is needed to clearly identify possible κ(t) divergence. 

The κ(t) as defined in Eq. (9) in the strained systems are 

hown in Fig. 10 . For Black-P and Violet-P, using the value F e = 1

μm) −1 m 

−1 as adopted in the unstrained condition leads to diver- 

ent κ(t) , but the convergence of κ(t) can be restored by reducing 

 e to 0.2 (μm) −1 m 

−1 . This means that λmax increases in Black-P 
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Fig. 4. (a–c) Phonon dispersions of (a) Black-P, (b) Blue-P, and (c) Violet-P from the NEP model (solid lines), GAP model (circles), and DFT-MBD calculations (dashed lines). 

The GAP results are from Ref. [35] . (d) Phonon group velocities of Black-P and Violet-P from the NEP model along �-X and �-Y. Our DFT-MBD results for Black-P and Blue-P 

closely match those reported by Zhu and Tománek [6] and Jain and McGaughey [13] . The phonopy package [36] is used for obtaining the DFT-MBD results. For Black-P, 

Blue-P, and Violet-P, the 5 × 5 (10 × 10), 5 × 5 (20 × 20), and 2 × 2 (5 × 5) supercells are respectively used in DFT-MBD (NEP) approaches. Noted that due to the high 

computational cost of DFT-MBD, the largest supercell we can afford is 2 × 2 (with 168 atoms), which explains the existence of imaginary frequencies around the � point 

and relatively large discrepancy between DFT-MBD and NEP approaches in Violet-P. 

Fig. 5. (a)–(f) The thermal conductivity as defined in Eq. (9) for the phosphorene 

allotropes at 300 K and zero pressure, along the zigzag/armchair or x / y directions 

as defined in Fig. 1 . In each subplot, the total thermal conductivity (“total”) is de- 

composed into contributions from in-plane (“in”) and out-of-plane (“out”) phonon 

modes. Solid lines are averaged values and dashed ones represent the error bounds 

from ten independent runs. 

a

t

v  

T

1

f

t

Fig. 6. (a) Diffusive spectral thermal conductivity κ(ω) , (b) ballistic spectral ther- 

mal conductance G (ω) , (c) phonon mean free path λ(ω) , and (d) length-dependent 

thermal conductivity κ(L ) for the phosphorene allotropes at 300 K and zero pres- 

sure. The symbols in (d) denote the system lengths needed to reach 90% of the 

convergent κ for each allotrope. 

s

N

t

b

λ
l

s  

d

i

t

m

nd Violet-P under the external strain but is still finite and κ is 

hus still finite. 

The situation is notably different in Blue-P, which exhibits di- 

ergent κ(t) even if F e is reduced from 0.1 to 0.01 (μm) −1 m 

−1 .

his means that λmax in 2% bi-axially stretched Blue-P is at least 

00 μm, which in turn means that κ(L ) does not converge be- 

ore the millimeter length scale. We cannot indefinitely reduce F e 
o probe a possible upper bound of λmax because of the reduced 
5 
ignal-to-noise ratio with decreased F e in the HNEMD simulations. 

evertheless, our results here do not show a sign of convergence 

rend of κ(t) and we conclude that the thermal conductivity in 2% 

i-axially stretched Blue-P appears unbounded. 

The out-of-plane phonons are responsible for the increased 

max under stretching ( Fig. 10 (d)). This is in turn related to the 

inearization of the ZA phonon dispersion around the � point as 

hown in the inset of Fig. 10 (d). The linearization of the ZA phonon

ispersion has been found to weaken the phonon scattering and 

ncrease the phonon group velocity [1] , both of which can lead 

o increased λmax . Indeed, in the case of silicene, a buckled 2D 

aterial similar to Blue-P, a linear dispersion of the ZA branch 
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Fig. 7. Phonon eigenmodes for (a)-(c) Black-P, (d)-(f) Blue-P, and (g)-(j) Violet-P at 

selected frequencies ω/ 2 π at the � point. The magnitude and direction of an ar- 

row represent the eigenvector component at an atom. LO, TO, and ZO represent the 

longitudinal, transverse, and out-of-plane optical phonon modes, respectively. The 

ovito package [7] is used for visualization. 

Fig. 8. Phonon participation ratio (PPR) as a function of phonon frequency for 

Black-P, Blue-P, and Violet-P at 300 K and zero pressure. 

Fig. 9. Thermal conductivity κ for the phosphorene allotropes as a function of tem- 

perature T . For each allotrope, κ is normalized by its value at 300 K. 

Fig. 10. The thermal conductivity as defined in Eq. (9) for the phosphorene al- 

lotropes at 300 K and different in-plane strain levels: (a) Black-P under 4% uniaxial 

tensile strain, (b) Violet-P, (c)-(d) Blue-P under 2% biaxial tensile strain. The inset 

in (d) shows the change of the ZA branch of Blue-P along the �-M path upon the 

application of 2% bi-axial tensile strain. 
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an lead to divergent κ even in the unstrained condition, accord- 

ng to the BTE-ALD approach [50] . Our findings for strained Blue- 

 here are consistent with previous BTE-ALD results [4 8,4 9] on 

trained graphene-like materials, although only three-phonon scat- 

ering processes were considered in the BTE-ALD approach. Our 

D simulations demonstrate the diverse effects of external strain 

n the thermal conductivity of general 2D materials in the non- 

erturbative regime. 

. Summary and conclusions 

In summary, we have constructed a unified MLP for three 2D 

hosphorene allotropes, Black-P, Blue-P, and Violet-P, based on the 

EP model [21–23] that has a comparable accuracy to the existing 

AP model [20] and a far superior computational efficiency. With 

his NEP model, we performed large-scale MD simulations to study 

hermal transport in these phosphorene allotropes. For Black-P and 

lue-P, our predicted thermal conductivity based on HNEMD simu- 

ations are consistent with literature results based on the BTE-ALD 

pproach, and for Violet-P, our approach allowed for the predic- 

ion of its thermal conductivity for the first time. We found that 

iolet-P has a much smaller thermal conductivity than Black-P and 

lue-P, due to the phonon localization in this material. Finally, we 

nd that, under external tensile strain, the thermal conductivity in 

lack-P and Violet-P are still finite, but that in Blue-P is still not 

onvergent at least up to the millimeter length scale, due to the 

inearization of the flexural phonon dispersion. 
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