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a b s t r a c t 

Recently a novel two-dimensional (2D) C 60 based crystal called quasi-hexagonal-phase fullerene (QHPF) 

has been fabricated and demonstrated to be a promising candidate for 2D electronic devices [Hou et al. 

Nature 606 , 507–510 (2022)]. We construct an accurate and transferable machine-learned potential to 

study heat transport and related properties of this material, with a comparison to the face-centered- 

cubic bulk-phase fullerene (BPF). Using the homogeneous nonequilibrium molecular dynamics and the 

related spectral decomposition methods, we show that the thermal conductivity in QHPF is anisotropic, 

which is 137(7) W/mK at 300 K in the direction parallel to the cycloaddition bonds and 102(3) W/mK 

in the perpendicular in-plane direction. By contrast, the thermal conductivity in BPF is isotropic and is 

only 0.45(5) W/mK. We show that the inter-molecular covalent bonding in QHPF plays a crucial role in 

enhancing the thermal conductivity in QHPF as compared to that in BPF. The heat transport properties as 

characterized in this work will be useful for the application of QHPF as novel 2D electronic devices. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Carbon has diverse chemical bonds and can form allotropes 

rom three to zero dimension. A fullerene is a zero-dimensional al- 

otrope consisting of carbon atoms connected by single and double 

onds. The most typical fullerene C 60 has been extensively stud- 

ed since its discovery [1] . C 60 can form a single-crystal [2] with 

ace-centered cubic (FCC) or simple-cubic structures, depending 

n the temperature. Thermal conductivity κ has been used as a 

eans to detect the ordering of the C 60 molecules in C 60 solids 

3] . It has been found that κ ≈ 0 . 4 W/mK and is nearly tempera-

ure independent above 260 K. Above the critical temperature, the 

 60 molecules begin to rotate quickly and phonons related to the 

enter-of-mass translational degree of freedom are scattered by the 

otational ones [4] . With a few GPa compressing pressure, the C 60 
∗ Corresponding authors. 
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ullerene system can be significantly hardened and κ can be in- 

reased up to 5.5 W/mK at room temperature [5] and higher pres- 

ure can enhance κ further [6] . Significant enhancement of κ due 

o polymerization has also been predicted [7] . These κ values are 

uch smaller than those in the quasi-one-dimensional and two- 

imensional carbon allotropes, namely carbon nanotubes (CNTs) 

8] and graphene [9] . Adding functional groups can further reduce 

he thermal conductivity of fullerene-based materials [10–14] . 

Despite the crystalline structures, heat transport in C 60 solids 

xhibit strong amorphous-like behaviors [4,13] . In this paper, we 

how that a new form of C 60 -based crystal has significantly larger 

and exhibits crystalline behaviors for heat transport. This new 

rystal consists of a monolayer of C 60 molecules connected by co- 

alent bonds, forming a structure named quasi-hexagonal-phase 

ullerene (QHPF). For convenience, we call the C 60 -based bulk crys- 

al as bulk-phase fullerene (BPF). QHPF has been recently realized 

xperimentally and shown to have good thermodynamic stability 

15] . A transport bandgap of about 1.6 eV has been determined 

15] and the in-plane structural anisotropy leads to anisotropic 

honon modes and electrical conductivity. Theoretical calculations 
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ndicate that monolayer QHPF is a promising candidate for pho- 

ocatalysis [16] . However, the thermal transport properties of this 

ovel material are still unknown. Due to the potential application 

f QHPF in 2D electronic devices, it is important to characterize the 

hermal transport of this material. 

Because the primitive cell of QHPF contains 120 carbon atoms, 

olecular dynamics (MD) is currently the only feasible computa- 

ional approach [17] to theoretically study heat transport in this 

aterial in the diffusive transport regime. An important input to 

he MD approach is a classical interatomic potential. For carbon, 

here are a few important empirical potentials such as the Ter- 

off one [18,19] , but they are mainly parameterized based on di- 

mond and/or graphene structures, without being aware of the ex- 

stence of the QHPF structure. Recently, machine-learned potentials 

MLPs) have been shown to be a promising on-demand approach 

o achieve an accurate description of the potential energy surface 

f a general material, provided that a sufficiently large set of train- 

ng structures with quantum-mechanical density functional theory 

DFT) data are available. Among the various MLPs, the neuroevolu- 

ion potential (NEP) approach [20–22] is one of the most compu- 

ationally efficient. 

In this paper, we employ the NEP approach as implemented in 

he gpumd package [23] to construct an accurate and transferable 

LP applicable to both QHPF and BPF, and study heat transport 

nd related properties of QHPF, with a comparison to BPF. Using 

he homogeneous non-equilibrium molecular dynamics (HNEMD) 

nd the related spectral decomposition methods [24] , we show 

hat the existence of the inter-molecular covalent bonds in QHPF 

eads to significantly larger κ in QHPF as compared to BPF in which 

he constituent C 60 molecules are mainly interacted by van-der- 

aals (vdW) force. 

. Models and methods 

.1. Models 

.1.1. The crystal structure of quasi-hexagonal-phase fullerene 

The crystal structure of monolayer QHPF is schematically shown 

n Fig. 1 (a). The dashed lines represent the primitive cell contain- 

ng two C 60 molecules with 120 carbon atoms in total. Each C 60 

olecule is linked with six neighbouring ones by covalent bonds, 

ith the [2 + 2] cycloaddition of ′ 5 , 6 ′ bonds occurring along the

010] direction and the C 

–C single-bonds forming along both the 

110] and [1 1 0] directions. Experimentally, 30–80 μm monolayer 
Fig. 1. Crystal structure of (a) monolayer QHPF and (b) BPF. The prim

2

HPF sheets have been exfoliated [15] , demonstrating the thermal 

tability of this unique structure. 

.1.2. The crystal structure of bulk-phase fullerene 

We will comparably study the BPF structure, which is schemat- 

cally shown in Fig. 1 (b). In this structure, each C 60 molecule occu- 

ies a site of the FCC lattice. There is no clear covalent bonds be- 

ween the C 60 molecules. Actually, the C 60 molecules do not have 

xed orientations but rotate constantly at room temperature. 

.2. The NEP approach for machine-learned potential 

The NEP approach for MLP has been recently proposed [20] as a 

romising tool to study heat transport with high accuracy and low 

ost. It has been improved later [21,22] and the version we used in 

his paper is the NEP3 model as detailed in Ref. [22] . 

For a MLP, the descriptor [25] is the most important aspect. In 

EP3, the descriptor consists of a number of radial and angular 

omponents as described below. 

The radial descriptor components are constructed as 

 

i 
n = 

∑ 

j � = i 
g n (r i j ) with 0 ≤ n ≤ n 

R 
max , (1) 

here the summation runs over all the neighbors of atom i within 

 certain cutoff distance. 

For the angular descriptor components, we consider both 3- 

ody ones ( 0 ≤ n ≤ n A max , 1 ≤ l ≤ l 3b 
max ) 

 

i 
nl = 

l ∑ 

m = −l 

(−1) m A 

i 
nlm 

A 

i 
nl(−m ) , (2) 

nd 4-body ones ( 0 ≤ n ≤ n A max , 1 ≤ l 1 = l 2 = l 3 ≤ l 4b 
max ) 

 

i 
nl 1 l 2 l 3 

= 

l 1 ∑ 

m 1 = −l 1 

l 2 ∑ 

m 2 = −l 2 

l 3 ∑ 

m 3 = −l 3 

(
l 1 l 2 l 3 

m 1 m 2 m 3 

)

× A 

i 
nl 1 m 1 

A 

i 
nl 2 m 2 

A 

i 
nl 3 m 3 

. (3) 

ere, 

 

i 
nlm 

= 

∑ 

j � = i 
g n (r i j ) Y lm 

(θi j , φi j ) , (4) 

nd Y lm 

(θi j , φi j ) are the spherical harmonics as a function of the 

olar angle θi j and the azimuthal angle φi j for the position dif- 

erence r i j ≡ r j − r i from atom i to atom j. The 4-body descriptor 
itive cell of QHPF is formed by the lattice parameters a and b. 
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omponents have been inspired by the atomic cluster expansion 

ACE) approach [26] . 

The functions g n (r i j ) in Eq. (1) are defined as a linear combina-

ion of N 

R 
bas 

+ 1 basis functions { f k (r i j ) } N 
R 
bas 

k =0 
: 

 n (r i j ) = 

N R 
bas ∑ 

k =0 

c i j 

nk 
f k (r i j ) , with (5) 

f k (r i j ) = 

1 

2 

[ 
T k 

(
2 

(
r i j /r R c − 1 

)2 − 1 

)
+ 1 

] 
f c (r i j ) . (6) 

ere, T k (x ) is the k th order Chebyshev polynomial of the first kind

nd f c (r i j ) is the cutoff function defined as 

f c (r i j ) = 

{ 

1 
2 

[ 
1 + cos 

(
π

r i j 

r R c 

)] 
, r i j ≤ r R c ;

0 , r i j > r R c . 
(7) 

ere, r R c is the cutoff distance of the radial descriptor compo- 

ents. The trainable expansion coefficients c 
i j 

nk 
depend on n and 

 and also on the types of atoms i and j. The functions g n (r i j ) in

qs. (2) and (3) are defined similarly but with a different basis 

ize N 

A 
bas 

and a different cutoff distance r A c . 

The various descriptor components are grouped into a vector 

ith N des components, { q i ν} N des 
ν=1 

. This vector is then taken as the

nput layer of a feedforward neural-network with a single hidden 

ayer with N neu neurons. The output of the neural network is taken 

s the potential energy of atom i . For the activation function in the

idden layer, we used the hyperbolic tangent function. 

Although the neural network architecture is not different from 

he one as first proposed by Behler and Parrinello [27] , the neu- 

al network in NEP is trained using a novel evolutionary algorithm 

alled the separable natural evolution strategy (SNES) [28] . The loss 

unction guiding the training process is defined as a weighted sum 

f the root mean square errors (RMSEs) of energy, force, and virial 

s well as terms serving as � 1 and � 2 regularization. The weight- 

ng factors for these terms are denoted as λe , λf , λv , λ1 , and λ2 ,

espectively. 

.3. The homogeneous nonequilibrium molecular dynamics method 

We used the HNEMD method to compute the thermal conduc- 

ivity in a given system. This method was first formulated in terms 

f two-body potentials [29] and later generalized to many-body 

nes [24] , including MLPs with atom-centered descriptors [20] . In 

his method, an external driving force (with zero net force) is 

dded to the atoms in the system, leading to a heat current that 

as nonzero ensemble average (taken as time average in MD sim- 

lation) 〈 J 〉 . In the linear-response regime, the heat current is pro- 

ortional to the driving force parameter F e : 

 J α〉 = T V 

∑ 

β

καβF 
β

e , (8) 

here T is the temperature and V is the volume of the system. The

roportionality constant καβ is the αβ component of the thermal 

onductivity tensor. In this paper, we are only interested in diago- 

al principal components of the thermal conductivity tensor. Then 

n a given direction α, the thermal conductivity component is writ- 

en as κα ≡ καα and is computed as 

α = 

〈 J α〉 
T V F αe 

. (9) 

he heat current can be resolved in the frequency domain, leading 

o the spectral thermal conductivity [24] 

α(ω) = 

2 

V T F αe 

∫ ∞ 

−∞ 

d te i ωt 
∑ 

i 

∑ 

j � = i 

〈
r αi j 

∂U j 

∂ r ji 
(0) · v i (t) 

〉
. (10) 
3 
ere, U j is the site energy of atom j, r ji = r i − r j , r i is the position

f atom i , and v i is the velocity of atom i . 

To cross check the HNEMD results, we also calculated the 

hermal conductivity of the QHPF structure using the Green–Kubo 

elation in the equilibrium molecular dynamics (EMD) method 

30,31] : 

α = 

1 

k B T 2 V 

∫ ∞ 

0 

dτ 〈 J α J α(τ ) 〉 , (11) 

here k B is Boltzmann’s constant and 

 α = 

∑ 

i 

∑ 

j � = i 
r αi j 

∂U j 

∂ r ji 
· v i (12) 

s the heat current that is applicable to general many-body 

otentials [32] . 

In all the MD simulations, the time step for integration was set 

o 0.5 fs, the target temperature is 300 K and the target pressure is 

ero. In the HNEMD simulations the magnitude of the driving force 

arameter was chosen as F e = 0 . 5 μm 

−1 and F e = 0 . 1 μm 

−1 for BPF

nd QHPF, respectively. For BPF, we have performed three indepen- 

ent HNEMD simulations, each with a production time of 2 ns. For 

HPF, we have performed five independent HNEMD simulations, 

ach with a production time of 5 ns. For the EMD method, we 

ave performed 60 independent simulations, each with a produc- 

ion time of 5 ns. The layer thickness of QHPF was set to 8.785 Å,

hich is the distance between two layers in bulk QHPF [15] . 

. Results and discussion 

.1. Training and validating the new NEP model 

A NEP model for carbon systems has been recently trained [22] , 

ut the training data were mostly consisting of diamond, graphite, 

morphous, and liquid structures, without explicit C 60 structures 

33] . Both the QHPF and the BPF structures are stable in MD sim- 

lations with this NEP model, but as we will show later, this NEP 

odel does not have sufficiently high accuracy for the QHPF and 

PF structures. To ensure high accuracy in the MD simulations, we 

evelop a more accurate NEP model trained against QHPF and BPF 

tructures with DFT reference values. For clarity, we call the old 

nd new NEP models NEP-Carbon and NEP-C 60 , respectively. 

.1.1. Generation of training and testing structures 

The training and testing structures include QHPF structures, BPF 

tructures, and C 60 chains. 

For QHPF, we used the NEP-Carbon model [22] to run NpT (con- 

tant number of atoms N, controlled pressure p, and controlled 

emperature T ) simulations with a rectangular box containing 120 

arbon atoms. The Bussi-Donadio-Parrinello thermostat [34] and 

he Bernetti-Bussi barostat [35] were used to realize the NpT en- 

emble. We considered three target pressures: 0, 1, and −1 GPa 

n both the x and y directions. For each target pressure, we lin- 

arly increased the target temperature from 10 K to 10 0 0 K during 

 simulation time of 2,500 ps. We sampled the structures every 

0 ps, obtaining 50 structures for each target pressure. Therefore, 

e have collected 150 structures in total. We used 120 randomly 

elected structures for training and the remaining 30 for testing. 

part from the above, we also performed DFT-based MD simula- 

ions at 800 K for 10 ps and sampled 10 0 0 structures (each con-

aining 240 atoms) to be used as an extra testing data set. 

For BPF, we started from an ideal FCC unit cell with four C 60 

olecules, which contains 240 carbon atoms in total. The centers 

f two neighboring C 60 molecules are separated by 9 Å [6] . We 

hen applied perturbations with 3% random box deformations and 

.1 Å random atom displacements to create 15 training structures 

nd 4 testing ones. 



H. Dong, C. Cao, P. Ying et al. International Journal of Heat and Mass Transfer 206 (2023) 123943 

Table 1 

Hyperparameters for the NEP-C 60 model. 

parameter value parameter value 

r R c 7 Å r A c 4 Å 

n R max 10 n A max 8 

N R 
bas 

10 N A 
bas 

8 

l 3b 
max 4 l 4b 

max 2 

N neu 50 λ1 0.1 

λ2 0.1 λe 1.0 

λf 1.0 λv 0.5 

N bat 10,000 N pop 60 

N gen 5 × 10 5 

v

t  

s

a

r

t

3

D

d

f

t

[

d  

e

o

3

a

c

u

c

a

c

s

b

d

i

r

t

i

c

a

3

t

p

e

u

f

p

f

(

h

N

b

f

t

Table 2 

Lattice constants of monolayer QHPF as calculated by the various potentials as well 

as DFT. 

Model a ( ̊A) b ( ̊A) 

DFT 15.81 9.12 

NEP-C 60 15.79 9.14 

NEP-Carbon 15.88 9.18 

Tersoff 16.30 9.35 

Table 3 

Thermal conductivity κ (in units of W/mK) of BPF and QHPF (in the x and y di- 

rections) as calculated by NEP-Carbon, NEP-C 60 , Tersoff and from experiments. An 

LJ potential is added to the Tersoff potential in the case of BPF. The experimental 

value is taken from Ref. [3] . 

Method QHPF- x QHPF- y BPF 

HNEMD Tersoff 75(9) 173(7) 0.14(6) 

NEP-Carbon 34(1) 37(2) 1.6(3) 

NEP-C 60 102(3) 137(7) 0.45(5) 

EMD NEP-C 60 109(19) 138(18) NA 

Experiment NA NA ∼ 0 . 4 

r

o

h

w

m

t

s
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l

3
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d

h
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o

3

3

m

3

f

a

p

a

T

p  

t

T

t

W

N

t

g

M

e

(

i

N

m

n

For C 60 chains, we considered two C 60 molecules in a box with 

acuum in the transverse directions and varied the separation be- 

ween them from 2 to 10 Å, with an interval of 0.5 Å, obtaining 17

tructures in total. All these structures were used for training. 

In summary, we have 152 and 1034 structures in the training 

nd testing data sets, which contain 20,040 and 244,560 atoms, 

espectively. We have checked the learning curve to confirm that 

his training data set is large enough. 

.1.2. DFT calculations 

After obtaining the structures, we used quantum-mechanical 

FT calculations to obtain their reference energy, force, and virial 

ata. To this end, we used the vasp package [36] and the PBE 

unctional [37] combined with the many-body dispersion correc- 

ion [38] . The energy cutoff for the projector augmented wave 

39,40] was chosen as 650 eV. A �-centered k -point mesh with a 

ensity of 0.25 Å
−1 

, and a threshold of 10 −8 eV were used for the

lectronic self-consistent loop. A Gaussian smearing with a width 

f 0.1 eV was used. 

.1.3. Choosing the training hyperparameters 

After calculating the reference values, we used the gpumd pack- 

ge [22,23] to train the NEP-C 60 model. The hyperparameters we 

hose are listed in Table 1 . Compared to the hyperparameter val- 

es for the NEP-Carbon model [22] , we have the following modifi- 

ations. First, we have increased the radial cutoff from 4.2 to 7 Å 

nd increased the angular cutoff from 3.7 to 4 Å. The notable in- 

rease in the radial cutoff is justified by the need for accurately de- 

cribing the vdW interactions between the C 60 molecules, as will 

e further discussed below. Second, we have removed the 5-body 

escriptor components as defined in Ref. [22] , which are not very 

mportant for our system. Third, we have increased the � 1 and � 2 
egularization weights from 0.05 to 0.1, which can help to increase 

he robustness of the potential in MD simulations. Fourth, we have 

ncreased the virial weight in the loss function from 0.1 to 0.5, be- 

ause virial has been regarded to be important for heat transport 

pplications [41] . 

.1.4. Training and testing results 

Figure 2 (a) shows the evolution of the various components in 

he loss function during the training process. The training has been 

erformed for 5 × 10 5 generations, after which the predicted en- 

rgy, virial, and force are compared against the DFT reference val- 

es in Fig. 2 (b)–(d) and (g). The RMSEs of the various quantities 

or both the training data set and the hold-out testing data set are 

resented. As a comparison, we also show the parity plots of force 

or the NEP-Carbon model and the Tersoff potential in Fig. 2 (e), (f), 

h), and (i). We see that the current NEP model exhibits a much 

igher accuracy compared to the other two potential models. Our 

EP-C 60 model can also accurately describe the interaction energy 

etween the C 60 molecules in the linear chain structure with dif- 

erent inter-molecular distances, as shown in Fig. 3 . The vdW in- 

eractions between the C molecules are mostly captured by the 
60 

4 
adial descriptor components with a relatively long cutoff (7 Å) in 

ur NEP model. In other MLPs, vdW interactions in carbon systems 

ave been modelled by an explicit dispersion term with [42] or 

ithout [43,44] environment dependence. 

To further demonstrate the higher accuracy of the NEP-C 60 

odel compared to the NEP-Carbon model and the Tersoff poten- 

ial, we compare the lattice constants in Table 2 . The lattice con- 

tants calculated from the NEP-C 60 model agree with the DFT val- 

es with less than 0 . 1% errors. The NEP-Carbon model has a little 

arger but still acceptable errors, but the Tersoff potential has 2–

% errors. Figures 4 and 5 show that the NEP-C 60 model also has 

igher accuracy than the other two for radial distribution, angular 

istribution, and vibrational density of states. We expect that the 

igher accuracy of the NEP-C 60 model can lead to more reliable 

rediction of the physical properties as discussed in the remainder 

f this paper. 

.2. Thermal transport 

.2.1. The bulk-phase fullerene crystal 

Figure 6 (a)–(c) show the cumulative time-average of the ther- 

al conductivity as computed using Eq. (9) for the BPF structure at 

00 K. A cubic simulation cell with 30,000 atoms was used. Apart 

rom the NEP-C 60 potential model constructed in this work, we 

lso considered the old NEP-Carbon model [22] and a hybridized 

otential formed by an intra-molecular Tersoff potential [19] and 

n inter-molecular Lennard–Jones (LJ) potential, which we call the 

ersoff-LJ potential. The energy and length parameters in the LJ 

otential was chosen as ε = 2 . 86 meV and σ = 3 . 47 Å [45] . The

ime-converged thermal conductivity is presented in Fig. 6 (d) and 

able 3 . 

The thermal conductivity of BPF at 300 K has been measured 

o be about 0.4 W/mK [3] . The Tersoff-LJ potential gives 0.14(6) 

/mK, which is much smaller than the experimental value. The 

EP-Carbon model gives 1.6(3) W/mK, which is much larger than 

he experimental value. The NEP-C 60 model, on the other hand, 

ives 0.45(5) W/mK, which is very close to the experimental value. 

oreover, the fast rotation of the C 60 molecules in BPF as observed 

xperimentally [3] can been reproduced with the NEP-C 60 model 

see the Supplementary Material for movies of the trajectories dur- 

ng the MD simulations of BPF as well as QHPF) but not with the 

EP-Carbon model. After confirming the reliability of the NEP-C 60 

odel in the prediction of the thermal conductivity of BPF, we 

ext study heat transport in the new QHPF structure. 
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Fig. 2. (a) Evolution of the various terms in the loss function for the training and testing data sets with respect to the generation. (b) Energy, (c) virial, and (d) force 

calculated from NEP-C 60 as compared to the DFT reference data for the training and testing data sets. Force calculated from (e) NEP-Carbon and (f) Tersoff as compared to 

the DFT reference data for the testing data set. Force calculated from (g) NEP-C 60 , (h) NEP-Carbon and (i) Tersoff as compared to the DFT-MD reference values in the extra 

testing data set (10 0 0 structures). 

Fig. 3. Energy of a linear chain of C 60 molecules as a function of the inter-molecular spacing. 
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Fig. 4. The (a) radial and (b) angular distribution functions of the QHPF structure at 800 K from DFT-PBE and the three potentials. The relative errors of the predictions by 

the three potentials to the DFT-PBE results for the (c) radial and (d) angular distribution functions. 

Fig. 5. The vibrational density of states of the QHPF structure at 800 K calculated using the (a) NEP-C 60 model, (b) the NEP-Carbon model, and (c) the Tersoff potential. 

Due to the high computational cost for DFT-PBE, we show the results from five short trajectories (represented as five thin lines in each subplot) to emphasize its relatively 

large statistical errors. For the three classical potential models, we have used long trajectories and the results have negligible statistical errors which are thus not shown for 

clarity. 
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Fig. 6. Thermal conductivity as a function of time for BPF at 300 K calculated using the HNEMD method with (a) the Tersoff-LJ potential, (b) the NEP-Carbon model, and (c) 

the NEP-C 60 model. (d) The converged thermal conductivity values from the different potentials as compared to an experiment value [3] . 

Fig. 7. Thermal conductivity as a function of time for the QHPF structure at 300 K calculated using the HNEMD method with (a) the Tersoff potential, (b) the NEP-Carbon 

model, and (c) the NEP-C 60 model. (d) The converged thermal conductivity values from the different potentials. 
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.2.2. The monolayer quasi-hexagonal-phase fullerene 

We similarly calculated the thermal conductivity of the QHPF 

tructure at 300 K using the three potential models. A rectangu- 

ar cell with 28,800 atoms was used, which is large enough to 

liminate finite-size effects in the HNEMD method. The results are 

hown in Fig. 7 and Table 3 . As a cross-check, we also calculated

he thermal conductivity of the QHPF structure at 300 K using 

he EMD method (with the same simulation domain size as in 

NEMD). The results are shown in Fig. 8 and Table 3 . We see that

he results from EMD and HNEMD are consistent in both the x and 

 directions within the statistical error bounds. 

Different from BPF, which is essentially isotropic regarding heat 

ransport, it turns out that heat transport in QHPF is anisotropic. 

he thermal conductivity in the y direction (see Fig. 1 ) is about 
7

0% higher than that in the x direction according to the NEP-C 60 

otential. The x and y components of the thermal conductivity 

n QHPF are about 200 and 300 times of that of BPF. The NEP- 

arbon potential predicted a much smaller anisotropy while the 

ersoff potential predicted a much larger one. Based on the results 

or BPF, we expect that the NEP-C 60 potential gives the most re- 

iable predictions due to its superior accuracy for the C 60 -based 

tructures. Nevertheless, we stress that the thermal conductivity of 

HPF has not been experimentally measured so far and out results 

ere should be regarded as theoretical predictions. 

To gain more insight, we show the spectral thermal conduc- 

ivity κ(ω) of QHPF in the x and y directions and that of BPF in

ig. 9 . We see that for all the materials and transport directions 

onsidered here, heat is mainly transported by phonons with fre- 
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Fig. 8. The running thermal conductivity as a function of the correlation time for the QHPF structure at 300 K in the (a) x and (b) y directions calculated using the EMD 

method with the NEP-C 60 potential. In each subplot, the thin lines represent the results from 60 individual runs (each with 5 ns production time), and the thick solid and 

dashed lines represent their average and error bounds. 

Fig. 9. The spectral thermal conductivity as a function of the vibrational frequency 

for QHPF in the x and y directions and BPF calculated using the NEP-C 60 potential. 

Note that we have multiplied the κ(ω) for BPF by 100. The inset shows the part 

with ω/ 2 π < 5 THz. 
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Fig. 11. (a) The phonon mean free path λ(ω) as a function of the frequency for 

QHPF in the x direction calculated using the NEP-C 60 potential. The inset shows the 

part with ω/ 2 π < 3 THz. (b) The effective thermal conductivity κ as a function of 

the system length L . The circles represent results from the NEMD simulations, and 

the line is from the HNEMD simulations. The inset shows the part with L < 80 nm. 
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uency smaller than about ν = ω/ 2 π = 2 THz, which is almost the

ange for the acoustic phonon branches in QHPF (see Fig. 10 (a)). 

his means that the acoustic phonons are the major heat carri- 

rs in QHPF. On the other hand, the phonon group velocities (see 

ig. 10 (b)) show relatively larger values for the y direction (cor- 

esponding to the � − Y path) than the x direction (corresponds 

o the � − X path). This can partially explain the anisotropic ther- 

al conductivity in QHPF as group velocity is one of the major 

actors determining the thermal conductivity. Besides thermal con- 

uctivity, the in-plane elasticity in QHPF has also been found to 

e anisotropic [46] . The anisotropy as exhibited by these physical 
ig. 10. (a) Phonon dispersion relations and (b) phonon group velocities in QHPF. We h

round the � point in (a) are typical for the frozen-phonon approach we used. More 

lleviate this numerical problem. 

8 
roperties can be expected from the asymmetric inter-molecular 

onding in QHPF as shown in Fig. 1 . 

Using the methods as developed in Refs. [24,47] , we also calcu- 

ated the phonon mean-free path (MFP) spectrum κ(ω) , as shown 

n Fig. 11 (a). The low-frequency phonons develop MFPs up to about 

0 microns, and the thermal conductivity thus only exhibits a con- 

ergence up to a system length (not to be confused with the sim- 

lation domain length in the HNEMD or EMD methods) of about 

ne millimeter, as can be seen from Fig. 11 (b). Due to the presence

f the large MFPs, it is unfeasible to calculate the diffusive ther- 

al conductivity using the non-equilibrium molecular dynamics 
ave omitted frequencies above 20 THz for clarity. The small negative frequencies 

advanced methods that take finite-temperature effects into account can help to 
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Fig. 12. The per-atom heat current distribution in QHPF with heat transport in the 

(a) x and (b) y directions. The color on the atoms represents the normalized magni- 

tude of the per-atom heat current in the transport direction. The arrow represents 

both the magnitude and the direction of the per-atom heat current. Only a small 

part of a system with 28,800 atoms is shown here for clarity. 
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NEMD) method. However, agreement between NEMD and HNEMD 

an be observed in a range of system length that is affordable for 

ur NEMD simulations. 

Apart from the frequency and momentum spaces, insight can 

lso be gained by from the real space. Figure 12 shows the real- 

pace heat current distribution in the HNEMD simulations. When 

he transport direction is x , inter-molecular heat is mainly car- 

ied by the atoms forming the C 

–C single bonds between the 

olecules; when the transport direction is y , inter-molecular heat 

s mainly carried by the atoms forming the so-called [2 + 2] cy- 

loaddition bonds along the [010] direction [15] . For both direc- 

ions, the inter-molecular heat is not mainly carried by the weak 

dW interactions but by the strong covalent bonds. By contrast, 

here is no persistent inter-molecular covalent bond in BPF and the 

 60 molecules rotate quickly, resulting in a strong suppression of 

he heat transport. This comparison highlights the vital role played 

y the inter-molecular covalent bonds in enhancing the thermal 

onductivity in QHPF as compared to that in BPF. 

. Summary and conclusions 

In summary, we have constructed an accurate and transferable 

LP based on the efficient NEP approach [20] , which is appli- 

able to both BPF and QHPF. The NEP model can accurately de- 

cribe both the covalent bonding and the vdW interactions in the 

 60 based structures. It predicted a thermal conductivity value of 

.45(5) W/mK at 300 K for BPF, which agrees with the experimen- 

al results [3] excellently. We then predicted the thermal conduc- 

ivity of QHPF to be anisotropic and is more than two orders of 

agnitude higher than BPF. We find that the inter-molecular cova- 

ent bonding in QHPF plays a crucial role in enhancing the thermal 

onductivity in QHPF as compared to that in BPF. As a possible fu- 

ure direction of research, we note that the NEP-C 60 model devel- 

ped here can be extended (by adding extra training data) to study 

ulti-layer and three-dimensional structures of stacked QHPF as 

ell as other polymerized structures based on C 60 . 
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