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ABSTRACT
We propose an approach that can accurately predict the heat conductivity of liquid water. On the one hand, we develop an accurate
machine-learned potential based on the neuroevolution-potential approach that can achieve quantum-mechanical accuracy at the cost of
empirical force fields. On the other hand, we combine the Green–Kubo method and the spectral decomposition method within the homoge-
neous nonequilibrium molecular dynamics framework to account for the quantum-statistical effects of high-frequency vibrations. Excellent
agreement with experiments under both isobaric and isochoric conditions within a wide range of temperatures is achieved using our approach.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147039

I. INTRODUCTION

Heat transport in fluids involves both interatomic interactions
and diffusion, and classical molecular dynamics (MD) simulation
is a viable method for computing heat conductivity by including
both the interaction and diffusion contributions. Extensive MD
simulations1–7 have been performed to calculate the heat conduc-
tivity of water using various empirical force fields, such as SPC/E,8
TIP4P,9 TIP4P/2005,10 and ReaxFF.11 However, the force fields
were found to have a major influence on the calculated thermal
conductivity, and quantitative agreement between simulations and
experimental measurements in a wide range of temperatures has not
been achieved for any force field so far.

One of the reasons for the disagreement between computations
and measurements is the inaccuracy of the empirical force fields.
Although classical MD simulations of heat transport can also be

driven by interactions computed by quantum-mechanical density
functional theory (DFT),12,13 this approach is currently not efficient
enough and has not been extensively applied to heat transport in
water. Recently, machine-learned potentials (MLPs)14 have emerged
as an alternative that can achieve the accuracy of DFT with a small
fraction of the cost. Recent studies15–19 have demonstrated the high
accuracy of MLPs in modeling the thermodynamics of water in var-
ious phases. The linear-scaling computational cost with respect to
the number of atoms enabled efficient MD simulation of heat trans-
port in complex systems that is beyond the reach of perturbative
methods.20–25 A deep potential (DP) model26 has been developed
to calculate the heat conductivity of water in a range of temper-
atures. However, only qualitative agreement with experiments has
been achieved. It has been not clear if MLPs can reliably predict the
heat conductivity of liquid water at a wide range of thermodynamic
conditions.
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In this work, we developed a MLP for water within the neu-
roevolution potential (NEP) framework,27–29 which is an efficient
MLP framework that has been developed with a particular empha-
sis on heat transport applications. The accuracy of the developed
NEP model is demonstrated by the radial and angular distribu-
tion functions as compared to DFT results. We performed equi-
librium molecular dynamics (EMD) simulations to calculate the
heat conductivity using the Green–Kubo relation.30,31 The results
from classical MD simulations driven by NEP do not match exper-
iments quantitatively. However, by applying a quantum-statistical
correction based on the spectral heat conductivity computed within
the homogeneous nonequilibrium molecular dynamics (HNEMD)
approach,32 quantitative agreement with experiments can be
achieved for a wide range of temperatures under both isobaric and
isochoric conditions.

II. A NEP MODEL FOR LIQUID WATER
The NEP approach as implemented in the GPUMD pack-

age33 has been introduced in Ref. 27 and improved later.28,29 This
approach follows the work of Behler and Parrinello14 to model
the site energy of an atom as an artificial neural network (ANN),
where the input layer consists of a descriptor vector of high dimen-
sions. The descriptor components are invariant with respect to the
translation, rotation, and permutation of atoms of the same kind.
For explicit expressions of the descriptor components, we refer to
Ref. 29. The name NEP comes from the algorithm for training the
ANN, which is a separable natural evolution strategy (SNES).34

To train a NEP model for liquid water, we used the
“refinement” dataset for liquid water taken from Ref. 19, computed
at the quantum-mechanical DFT level with the strongly constrained
and appropriately normed (SCAN) functional.35 There are 1888
structures (each with 128 H2O molecules) in total, and we randomly
selected 1388 for training and 500 for testing. For more details on
the generation of the reference data, we refer to Ref. 19.

The hyperparameters we used in the NEP model are as fol-
lows. The NEP descriptor consists of a number of radial and angular
components.27–29 For the radial components, we used a cutoff radius
of 6 Å and ten radial functions (each being a linear combination of
ten basis functions). For the angular components, we used a cutoff
radius of 4 Å, eight radial functions (each being a linear combina-
tion of eight basis functions), three-body correlations up to l = 4 in
the spherical harmonics, and four-body correlations up to l = 2. The
ANN in the NEP model has a single hidden layer, and we used 100
neurons for this layer.

We trained the NEP model for 300 000 generations using the
SNES algorithm, and the loss terms for energy, force, and virial in
the test set are largely converged [Fig. 1(a)]. The predicted energy,
force, and virial for the test set are compared to the DFT reference
data in Figs. 1(b)–1(d), showing good correlations. Quantitatively,
the root mean square errors (RMSEs) for energy, force, and virial
are 0.89 meV/atom, 76 meV/Å, and 5.2 meV/atom in the training
dataset and are 1.0 meV/atom, 73 meV/Å, and 5.0 meV/atom in the
test dataset. The level of accuracy is comparable to those reported in
previous works on identical or similar datasets.19,26

Our NEP model can achieve not only a high accuracy but
also a high computational speed. To show this, we compare the
computational speeds of NEP as implemented in the GPUMD

FIG. 1. (a) RMSEs of energy, force, and virial for the test set as a function of the
number of generations. (b)–(d) The comparison between the NEP predictions and
DFT reference values of energy, force, and virial for the test set.

package (version 3.6)33 and the SPC/E force field as implemented
in the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) package (the 23 June 2022 version).36 For the
SPC/E force field, Coulomb interactions were evaluated using the
particle–particle–particle–mesh (PPPM) method with a real-space
cutoff distance of 12 Å and a relative accuracy of 10−6 in force cal-
culations. Figure 2 shows that our NEP model is literally as fast

FIG. 2. Computational speed of our NEP model as implemented in GPUMD33 in
MD simulations as compared to that of the SPC/E force field as implemented in
LAMMPS.36 For NEP, a single GPU (Nvidia 3090, 3090Ti, or A100) was used; for
SPC/E, 96 CPU cores (two nodes, each with 48 Intel Xeon Platinum 9242 CPU
cores) were used.
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FIG. 3. RDFs for (a) O–O and (b) O–H pairs and (c) ADF for O–O–O triplets calcu-
lated using classical MD simulations at 300 K and 1 bar driven by DFT (solid lines)
and NEP (dashed lines).

as the SPC/E force field for comparable amounts of computational
resources.

To validate the accuracy of the trained NEP model in MD sim-
ulations, we compare the radial distribution function (RDF) and
angular distribution function (ADF) obtained by classical MD sim-
ulations driven by the NEP model and DFT calculations, both at 300
K and 1 bar. As shown in Fig. 3, good agreement is achieved for the
RDFs for O–O pairs, gOO(r), and O–H pairs, gOH(r), and the ADF
for O–O–O triplets gOOO(θ). The DFT results were obtained using
a small cell with 384 atoms, while the NEP results were obtained
using a much larger cell with 3000 atoms, which explains the much
smoother distribution functions from the NEP model. Good agree-
ment here indicates that our NEP model can accurately reproduce
the dynamics of liquid water, which is a prerequisite for the reliable
study of heat transport.

III. HEAT CONDUCTIVITY OF LIQUID WATER
FROM MD SIMULATIONS
A. Classical heat conductivity of liquid water

We calculated the heat conductivity of liquid water using the
well-established Green–Kubo method,30,31 in which the running
heat conductivity κtotal(t) (the meaning of the superscript “total”
will become clear below) is calculated as a time integral of the heat
current autocorrelation function (HCACF) ⟨J(t) ⋅ J(0)⟩,

κtotal(t) = 1
3kBVT2∫

t

0
dt′⟨J(t′) ⋅ J(0)⟩, (1)

where kB is Boltzmann’s constant and T and V are the temperature
and volume of the system, respectively. The heat current J(t) is sam-
pled at an equilibrium state. For liquid molecules, the heat current
has two contributions,

J = Jk + Jp. (2)

The kinetic term (also called convective term) is

Jk =∑
i
viEi, (3)

and the potential term for many-body potentials, such as our NEP
model, is37

Jp =∑
i
∑

j
ri j

∂U j

∂r ji
⋅ vi. (4)

Here, Ei = 1
2 miv

2
i +Ui is the total energy of atom i, where mi, vi,

and U i are, respectively, the mass, velocity, and potential energy of
atom i. According to the decomposition of the heat current, the heat
conductivity can be decomposed into three terms,

κtotal(t) = κpp(t) + κkk(t) + κpk(t), (5)

where the potential–potential term κpp, the kinetic–kinetic term κkk,
and the cross term κpk correspond to the following HCACFs: ⟨Jp(t)
⋅ Jp(0)⟩, ⟨Jk(t) ⋅ Jk(0)⟩, and ⟨Jp(t) ⋅ Jk(0)⟩ + ⟨Jk(t) ⋅ Jp(0)⟩.

The Green–Kubo method is based on EMD, where the sys-
tem is first equilibrated in the NVT (constant number of atoms
N, constant volume V , and constant target temperature T) or NpT
(constant target pressure p) ensemble to reach an equilibrium state,
and the heat currents are then sampled in the NVE (constant energy
E) ensemble. In all the MD simulations in this work, we used a
time step of 0.1 fs, which has been tested to be small enough. In
EMD simulations, we used an equilibration time of 50 ps and a pro-
duction time of 10 ps. For each thermodynamic state with a given
temperature and pressure (or density), we performed about 50 inde-
pendent runs and calculated the statistical error as the standard error
between the independent runs. We have tested the effects of finite
simulation cells and found that the heat conductivity is essentially
unchanged when the linear size of a cubic cell increases from 3 to
11 nm. We chose to use a cell with a linear size of about 6 nm con-
taining 24 576 atoms (8192 water molecules) for all the subsequent
calculations.

Figures 4(a)–4(c) show the running heat conductivity compo-
nents κpp(t), κkk(t), and κpk(t), respectively. In the interval from
t = 3–5 ps, all the components show stable oscillations only, with-
out an overall increasing or decreasing trend. We therefore average
the running heat conductivity over this time interval for each inde-
pendent run. With about 50 independent runs, we thus obtained a
mean value of each heat conductivity component and a statistical
error estimate. These are shown in Fig. 4(d). Among the three com-
ponents, κkk is about one order of magnitude smaller than κpp and
κpk is essentially zero.

Using the Green–Kubo method, we computed the total heat
conductivity κtotal of liquid water from 275 to 500 K (with a step
of 12.5 K) under both isobaric and isochoric conditions. Isobaric
conditions were achieved by using the NpT ensemble38 with a tar-
get pressure of 30 bars. Isochoric conditions were achieved by using
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FIG. 4. (a)–(c) Running heat conductivity of liquid water at 300 K and 30 bars
as a function of correlation time t for the potential–potential term (κpp), the
kinetic–kinetic term (κkk), and the cross term (κpk), respectively. (d) Time-
converged values for the three components from EMD simulations and the
potential–potential term from HNEMD simulations. The thin gray lines in (a)–(c)
represent results from independent runs, while the thick lines are the averages.

the NVT ensemble39 with a fixed density of 1 g/cm3. Our results for
isobaric and isochoric conditions are represented in Figs. 5 and 6,
respectively, along with the experimental data from the National
institute of Standards and Technology (NIST)40,41 and previous the-
oretical ones. In the isobaric case, our heat conductivity values (the

FIG. 5. Heat conductivity κ as a function of temperature T for liquid water from our
calculations and previous predictions using the DP model26 and three empirical
force fields (SPC/E, TIP4P, and TIP4P/2005)6 and the experimental data from
NIST.40,41

FIG. 6. Classical and quantum corrected heat conductivity κ of liquid water as a
function of temperature in the isochoric condition as compared to the experimental
values from NIST.40,41

classical ones) are very close to the previous ones obtained by using
the DP approach,26 except for a noticeable difference around 300 K.
However, the heat conductivity values from both DP and our NEP
are significantly higher than the experimental ones, particularly at
the lower temperatures. The predicted results from the empirical
force fields (SPC/E, TIP4P, and TIP4P/2005)6 show a more com-
plex pattern: they are relatively high at about 400 K but can be close
to or lower than experimental values at both the low- and high-
temperature limits. Because the experimental data from NIST40,41

have small uncertainties (a few percent at most), the results in Fig. 5
show that all the theoretical predictions do not quantitatively agree
with the experiments. As we will argue below, nuclear quantum
effects (NQEs) play an important role here.

B. Quantum-corrected heat conductivity
of liquid water

In classical MD simulations, the vibrations in the system fol-
low the classical statistics, with all degrees of freedom being fully
activated regardless of the temperature and frequency. However,
according to quantum statistics, high-frequency degrees of freedom
are frozen at low temperatures. Quantitatively, a degree of free-
dom with frequency ω at temperature T is only activated with the
following probability:

p(x) = x2ex

(ex − 1)2 , (6)

where x = hω/kBT, h being the reduced Planck constant. Frequency
domain quantum correction42 based on the vibrational density of
states (VDOS) has been successfully applied to correct thermody-
namic quantities (such as heat capacity) calculated using classical
MD. To our best knowledge, this type of quantum correction has not
been applied to heat transport in liquid water. Similar to the quan-
tum correction of heat capacity in water42 based on spectral analysis,
heat conductivity can be quantum-corrected based on a spectral heat
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conductivity, as has been recently demonstrated for amorphous sili-
con in the context of MLP.25 Such spectral heat conductivity can be
conveniently obtained in the framework of the HNEMD method as
developed in Ref. 32.

In HNEMD simulations, a driving force

Fi = Fe ⋅∑
j≠i

ri j ⊗
∂U j

∂r ji
(7)

was applied to each atom i of the system to drive the system into
a nonequilibrium steady state, in which the classical spectral heat
conductivity is calculated. The vector Fe represents the driving force
parameter that is of the dimension of inverse length. For more
details on the HNEMD method for many-body potentials, we refer
to Ref. 32. Five independent runs, each with a production time of
100 ps, were performed to calculate the mean value and statisti-
cal error of the heat conductivity. As only the potential–potential
part of the HCACF involves high frequencies that require a
quantum correction, here, we only apply the HNEMD method
to calculate the spectral heat conductivity κpp(ω), which can be
expressed as32

κpp(ω) = 2
VTFe

∫
∞

−∞

dteiωt∑
i
∑
j≠i
⟨xi j

∂U j

∂r ji
(0) ⋅ vi(t)⟩. (8)

Here, we have assumed that heat transport is along the x direc-
tion. The magnitude Fe of the driving force parameter is set to
0.001 Å−1, which is sufficiently small to keep the system within the
linear-response regime.

Equation (8) represents a Fourier transform in which the inte-
gral is formally from −∞ to ∞. In numerical calculations, it is
evaluated based on discrete Fourier transform (or more exactly, dis-
crete cosine transform). In MD simulation, the virial-velocity time
correlation function ⟨⋅ ⋅ ⋅⟩ in Eq. (8) is evaluated at discrete times
and only up to a finite upper limit tmax. A Hann window function
is applied before performing the discrete cosine transform. Accord-
ing to Nyquist sampling theorem, tmax determines the frequency
resolution that can be achieved: a larger value of tmax results in a
finer frequency resolution. In our calculations, we used tmax = 250 fs,
which gives a frequency resolution of 1/2tmax = 2 THz. This is suf-
ficient for our purpose. Using larger tmax does not affect any of our
results significantly.

The integration of the spectral heat conductivity over the
frequency ω is κpp,

κpp = ∫
∞

0

dω
2π

κpp(ω). (9)

For the potential–potential part, HNEMD and EMD give consistent
heat conductivity, as shown in Fig. 4(d). With the classical spectral
heat conductivity available, we can then obtain a quantum-corrected
spectral heat conductivity κpp

q (ω) by multiplying κpp(ω) with the
probability p(x),

κpp
q (ω) = κpp(ω)p(x). (10)

Figure 7(a) shows that the quantum correction is significant at
300 K.

FIG. 7. (a) Classical and quantum-corrected spectral heat conductivity for liquid
water at 300 K and 30 bars. (b) Quantum-corrected spectral heat conductivity for
liquid water at 500 K and two different conditions: the isobaric condition with a
pressure of 30 bars and the isochoric condition with a density of 1 g/cm3.

After applying this quantum correction, we can obtain the
overall quantum-corrected potential–potential part of the heat
conductivity as

κpp
q = ∫

∞

0

dω
2π

κpp
q (ω). (11)

Because the kinetic–kinetic and potential–kinetic parts do not
involve high-frequency vibrations, they do not need to be quantum
corrected. Therefore, we can obtain the quantum-corrected total
heat conductivity as

κtotal
q = κpp

q + κkk + κpk. (12)

The total heat conductivity values before and after the quantum
correction are listed in Table I and are also shown in Figs. 5
and 6.

The quantum-corrected total heat conductivity values agree
excellently with experiments in the whole temperature range for
both isobaric (Fig. 5) and isochoric (Fig. 6) conditions. Quantitative
agreement with experiments for different temperature and pressure
(density) conditions cannot be an accident, and it strongly suggests
the reliability of our NEP model and the effectiveness of the quan-
tum correction based on the spectral heat conductivity. Particularly,
our approach has correctly predicted the much larger heat conduc-
tivity under the isochoric condition than that under the isobaric
condition at 500 K. This is intuitively understandable as the density
for the isochoric condition is higher than that for the isobaric condi-
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TABLE I. Calculated classical and quantum-corrected heat conductivity values (in units of W m−1 K−1) at different temper-
atures T (in units of K) under both isobaric and isochoric conditions. The numbers within the parentheses are statistical
uncertainties for the last significant number(s).

T Isobaric Isochoric

Classical Quantum Classical Quantum

275 0.91(4) 0.58(5) 0.89(6) 0.57(10)
287.5 0.88(3) 0.59(4) 0.89(4) 0.58(5)
300 0.89(5) 0.60(7) 0.89(5) 0.60(7)
312.5 0.90(3) 0.62(4) 0.82(5) 0.58(7)
325 0.88(5) 0.64(6) 0.94(8) 0.66(11)
337.5 0.85(6) 0.62(7) 0.90(4) 0.67(5)
350 0.84(5) 0.66(6) 0.89(6) 0.69(7)
362.5 0.86(5) 0.68(6) 0.93(4) 0.71(5)
375 0.83(8) 0.66(9) 0.90(6) 0.72(8)
387.5 0.84(6) 0.67(6) 0.88(7) 0.75(9)
400 0.84(6) 0.70(7) 0.90(8) 0.74(9)
412.5 0.81(6) 0.66(7) 0.89(4) 0.76(4)
425 0.78(4) 0.64(5) 0.89(4) 0.76(5)
437.5 0.76(5) 0.64(6) 0.96(5) 0.81(6)
450 0.77(5) 0.66(7) 0.95(5) 0.80(6)
462.5 0.74(5) 0.64(6) 0.91(4) 0.80(5)
475 0.75(5) 0.64(6) 0.96(6) 0.85(7)
487.5 0.72(7) 0.61(8) 0.90(9) 0.80(12)
500 0.72(5) 0.64(6) 0.99(6) 0.85(7)

tion, resulting in stronger interatomic interactions that can enhance
the potential–potential part of the heat conductivity. Figure 7(b) fur-
ther shows that this enhancement mainly comes from the vibrations
with ω/2π < 10 THz.

We can now better interpret the theoretical predictions from
the DP26 model and the three empirical force fields,6 as shown
in Fig. 5. If the quantum correction were also applied to these
predictions, we expect that the DP results would agree well with
experiments as well, except for the temperatures close to 300 K. On
the other hand, all the three empirical force fields would significantly
underestimate the experimental results at 300 K.

IV. DISCUSSION
Good agreement between our theoretical calculations and

experiments clearly depends on both the accuracy of the NEP
model and the effectiveness of the HNEMD-based quantum correc-
tion method. Here, we discuss the rationales of the HNEMD-based
quantum correction method and related approaches.

We start our discussion by presenting a general expression of
the spectral heat conductivity,

κ(ω) = c(ω)v2(ω)τ(ω), (13)

where c(ω) is the modal heat capacity, v(ω) is the modal group
velocity, and τ(ω) is the relaxation time of the heat carriers,
which are not necessarily phonons but are related to the collective
vibrations in the system.

Clearly, one of the NQEs is related to the modal heat capacity:
classical MD overestimates the modal heat capacity by exciting any
vibrational mode regardless of its frequency and temperature. The
quantum correction for this is simple, which is to multiply c(ω) by
p(x) as defined in Eq. (6).

There are essentially no NQEs in the group velocity, but there
can be complicated NQEs in the relaxation time. This is the case for
crystals as has been discussed in the context of phonon Boltzmann
transport equation.43–45 For example, if classical MD overestimates
the population of a given phonon frequency, it leads to overesti-
mated scattering to other phonons. Whether classical MD leads to
overestimated or underestimated heat conductivity thus depends
on the competition between the NQEs on c(ω) and τ(ω). Even
though classical MD might lead to the correct total heat con-
ductivity, the spectral heat conductivity can significantly deviate
from the quantum result. Therefore, there is so far no feasible
quantum-correction method for heat conductivity of crystals for
which phonon–phonon scattering is the major source of resistiv-
ity.46 Particularly, the temperature-rescaling method47–49 based on
equating the classical and quantum energies has been shown to be
infeasible.43,45

The situation is different for disordered materials, where the
elastic scattering for the vibrational modes by disorder dominates
and the population of vibrations has negligible effects on elastic
scattering processes. Therefore, the major quantum effects in clas-
sical simulation of disordered systems are from the overestimated
modal heat capacity. In this case, the spectral heat conductivity can
be quantum corrected by multiplying it with p(x), which is con-
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sistent with the HNEMD-based quantum-correction method. The
effectiveness of this quantum-correction method has been recently
demonstrated for amorphous materials,25 and our current work
extends its applicability to liquids by complementing it with EMD
simulations for convective heat transport.

While we have only studied liquid water in this work, we believe
that our approach is also applicable to other fluids with light ele-
ments at relatively low temperatures. However, a more systematic
study is needed to evaluate the effectiveness of our approach in
other systems. We note that quantum MD methods, such as lin-
earized semiclassical initial value representation, centroid MD, and
ring-polymer MD, have been used to study heat transport of both
liquids50–52 and solids53 to account for the NQEs. The relative per-
formance of our approach compared to these quantum MD methods
in predicting heat conductivity remains to be explored. Particularly,
our approach does not account for NQEs in κkk, which is essentially
a zero-frequency property similar to the diffusion coefficient. As it
has been shown that there are large NQEs in the diffusion coefficient
of liquid water,54 we expect that there are also NQEs in κkk. How-
ever, we note that the classical value of κkk only contributes about
10% to the total heat conductivity. Therefore, even though we have
not quantum-corrected κkk, we have only ignored little NQEs for the
total heat conductivity.

V. CONCLUSIONS
In summary, we have constructed a NEP model for liquid

water that can accurately reproduce structural properties as deter-
mined by quantum-mechanical DFT calculations. The NEP model
is as efficient as empirical force fields of liquid water in large-
scale MD simulations. Heat conductivity values calculated using the
Green–Kubo method within classical MD simulations were found
to be overestimated against experimental results, particularly for
relatively low temperatures. This led us to identify the importance
of NQEs in determining the heat conductivity of water. We then
proposed a scheme of quantum correction based on the spectral
heat conductivity as calculated within the framework of HNEMD
simulations, which leads to excellent agreement with experiments
under both isobaric and isochoric conditions within a large range of
temperatures.
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