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Table 1. The RMSEs for energy (meV atom–1), force (meV Å–1),
and virial (meV atom–1) of the NEP models versus the PBE-D3
reference and the computational speeds (atom-step/second) in MD
simulations of bilayer graphene with 40 000 atoms using one
GeForce RTX 4090 GPU card.

NEP models Energy Force Virial Speed

NEP (4.5 Å, 4.5 Å)-D3 1.16 46.72 15.38 6.29e6
NEP (6.0 Å, 4.5 Å) 1.28 47.45 17.33 2.05e7
NEP (8.0 Å, 4.5 Å) 1.25 48.08 16.09 1.53e7
NEP (10.0 Å, 4.5 Å) 1.29 49.60 17.44 8.50e6
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Abstract
Machine-learned potentials (MLPs) have become a popular approach of modeling interatomic
interactions in atomistic simulations, but to keep the computational cost under control, a
relatively short cutoff must be imposed, which put serious restrictions on the capability of the
MLPs for modeling relatively long-ranged dispersion interactions. In this paper, we propose to
combine the neuroevolution potential (NEP) with the popular D3 correction to achieve a unified
NEP-D3 model that can simultaneously model relatively short-ranged bonded interactions and
relatively long-ranged dispersion interactions. We show that improved descriptions of the
binding and sliding energies in bilayer graphene can be obtained by the NEP-D3 approach
compared to the pure NEP approach. We implement the D3 part into the gpumd package such
that it can be used out of the box for many exchange-correlation functionals. As a realistic
application, we show that dispersion interactions result in approximately a 10% reduction in
thermal conductivity for three typical metal-organic frameworks.

Keywords: machine-learned potentials, neuroevolution potential, D3 dispersion correction,
bilayer graphene, GPUMD, metal-organic frameworks, thermal conductivity

1. Introduction

Machine-learned potential (MLP) [1] is an emerging approach
for modeling the interatomic interactions in materials. To
achieve a linear scaling of the computational cost with respect
to the system size, a MLP must be constructed based on local
descriptors [2]. The descriptor for an atom is usually con-
structed based on the positions of its neighbors within a cer-
tain cutoff Rc. The average number of neighbors for an atom,
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hence the computational cost of a MLP, is proportional to R3
c .

Therefore, in practice, Rc is usually chosen to be a few Å.
This length is usually sufficient for describing the bond inter-
actions in typical materials, but is not sufficient for describ-
ing the London dispersion interactions that can extend to one
to a few nm. However, the dispersion interactions are import-
ant in describing e.g. the interlayer attractions in the so-called
van-der-Waals (vdW) layered materials [3, 4], structural trans-
formation between a narrow-pore and large-pore phase in flex-
ible metal-organic frameworks (MOFs) [5, 6], and host-guest
interactions in MOFs [7, 8].

To address this challenge, a few attempts have beenmade to
augment MLPs with dispersion corrections. Wen and Tadmor
[9] added an attractive −C6/r6ij term multiplied by some
switching/damping functions to a MLP, where rij is the dis-
tance between atoms i and j and C6 > 0 is a fitting parameter.

1 © 2023 The Author(s). Published by IOP Publishing Ltd
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There are four additional fitting parameters in the switch-
ing functions [9]. They have obtained quite good description
for the binding and sliding energies in bilayer graphene. By
adding a similar −C6/r6ij term, Deringer et al [10] and Rowe
et al [11] constructed general-purpose MLPs for phosphorous
and carbon systems. Muhli et al [12] developed a more soph-
isticated method that determines the dispersion coefficient and
damping function using a local descriptor.

Despite these achievements, it still requires quite a lot
efforts to determine the dispersion interactions for a MLP
model. The determination of the dispersion coefficient and the
damping function is species and system dependent, and the
process is thus not very systematical and transferable. Indeed,
it is known that the dispersion coefficient is environment
dependent, which has been taken into account in many popu-
lar dispersion corrections to density functional theory (DFT),
such as the D3 approach [13, 14]. To our best knowledge, the
D3 approach has not been combined with MLPs to perform
large-scale atomitstic simulations. One reason is that there is
so far no efficient implementation of D3 for the use with clas-
sical potentials. In this work, we make an efficient graphics
processing units (GPU) implementation of D3 into the gpumd
package [15] and combine it with the machine-learned neuroe-
volution potential (NEP) [16–18] to form a NEP-D3 approach.
This approach inherits all the merits of D3 and applies to the
94 elements H-Pu for a large number of DFT functionals. Due
to the separability of the NEP and D3 parts in our approach, it
also allows for isolating the role of dispersion interactions in
affecting specific physical properties.Wewill use two example
systems, bilayer graphene and MOFs, to demonstrate the con-
venience, accuracy, efficiency, generality, and usefulness of
the NEP-D3 approach.

NEP is a neural-network-based MLP which got its name
due the use of an evolutionary algorithm for training the free
parameters [16–18]. In this method, the total energy of a sys-
tem is taken as the sum of the site energies at each atom, which
is taken as the output of a neural-network, as first proposed
by Behler and Parrinello [19]. The input layer of the neural-
network consists of a number of features called descriptor
components. The design of descriptor components is crucial
for a MLP and different MLPs presently in use differ from
each other mainly by the descriptor. In the very first version of
NEP [16], it has been realized to be beneficial to have two dif-
ferent kinds of descriptor components, the radial ones and the
angular ones. The radial descriptor components depend only
the interatomic distances, which are relatively cheaper to cal-
culate, while the angular descriptor components also depend
on bond angles and are relatively more expensive to calcu-
late. Therefore, it has been suggested to use a relatively longer
cutoff for the radial descriptor components rRc in combina-
tion with a relatively shorter cutoff for the angular descriptor
components rAc when this is beneficial [16]. For example,
this strategy has been used for modeling a number of vdW
structures [20, 21] that have both strong covalent bonds and
weak vdW interactions, where rRc was taken to be about 7–8Å
and rAc 3–4Å.While constructing a pure NEP that incorporates
dispersion interactions is feasible, the primary objective of this

work is to introduce theNEP-D3method that addresses disper-
sion interactions in a more elegant manner. We will compare
results from the two approaches in terms of both accuracy and
computational efficiency.

2. Results and discussion

2.1. Implementation of the D3 dispersion correction into
GPUMD

The D3 dispersion correction has contributions from a ‘two-
body’ (the meaning of the quotes will be made clear soon) part
and a three-body part. However, it has been recommended not
to include the three-body part [13]. We therefore only con-
sidered the two-body part, which is also the choice of our ref-
erence DFT code Vienna Ab initio simulation package (vasp)
[22, 23]. We chose to use the Becke–Johnson damping which
does not introduce spurious force at short distances [14]. The
total D3 energy can be expressed as

UD3 =
∑
i

UD3
i ; (1)

UD3
i =−1

2

∑
j ̸=i

s6C6ij

r6ij+(a1R0 + a2)
6 −

1
2

∑
j̸=i

s8C8ij

r8ij+(a1R0 + a2)
8 ,

(2)

where rij is the distance between atoms i and j, s6, s8, a1, and a2
are parameters depending on the chosen exchange-correlation
functional,C6ij andC8ij are the dispersion coefficients for the ij
atom pair, and R0 is taken as the geometric mean of tabulated
parameters for each species. The summation of j is over the
neighbors of i within a cutoff Rpot.

The two dispersion coefficients are related byC8ij = C6ijR2
0.

The dispersion coefficientC6ij is calculated as a function of the
coordination numbers ni and nj,

C6ij (ni,nj) =

∑
a

∑
bC

ref
6ijabe

−4
[
(ni−nrefia )

2
+(nj−nrefjb )

2
]

∑
a

∑
b e

−4
[
(ni−nrefia )

2
+(nj−nrefjb )

2
] , (3)

where the summations of a and b are over the numbers of refer-
ence points for atoms i and j, respectively. Here, nrefia is the ath
reference coordination number for atom i, nrefjb is the bth ref-
erence coordination number for atom j, and Cref

6ijab is the (a, b)
reference dispersion coefficient for the atom pair (i, j).

The coordination number for atom i is defined as

ni =
∑
j̸=i

1

1+ e−16[(Rcov
i +Rcov

j )/rij−1]
, (4)

where Rcov
i is the effective covalent radius of atom i. The sum-

mation of j is over the neighbors of i within a cutoff Rcn.
Because the coordination number of atom i depends on its
neighbors, it is clear to see that the ‘two-body’ part of D3 is not
a truly two-body (pairwise) potential, but a many-body poten-
tial. This is the reason for using the quotes. For a many-body
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potential, the general formulation for force, virial, and heat
current has been established before [24, 25]. The force acting
on atom i can be written as

FD3
i =

∑
j̸=i

FD3
ij , (5)

where

FD3
ij =

∂UD3
i

∂rij
−

∂UD3
j

∂rji
, (6)

and rij ≡ rj− ri. The per-atom virial can be defined as

WD3
i =

∑
j̸=i

rij⊗
∂UD3

j

∂rji
, (7)

and the per-atom heat current can be expressed as

JD3i =WD3
i · vi, (8)

where vi is the velocity of atom i. The efficient GPU imple-
mentation of D3 then follows the general algorithms for many-
body potentials [15]. From a practical point of view, the use of
D3 only requires three inputs: the exchange-correlation func-
tional, the cutoff for the potential Rpot, and the cutoff for the
coordination number Rcn. The combined NEP-D3 potential is
simply a sum of D3 and NEP energies,

UNEP−D3 = UNEP +UD3, (9)

where UNEP is the NEP energy as detailed in previous works
[16–18]. The NEP model here can also be replaced by the
NEP-ZBL model [26] where the Ziegler–Biersack–Littmark
(ZBL) potential is used to describe the strong repulsive forces
at extremely short distances.

To confirm the correctness of our GPU implementation of
D3 in gpumd and to evaluate the effects of cutoffs, we take
three MOF materials (MOF-5, ZIF-8, and HKUST-1) as stud-
ied before using NEP models [27] and compare the calculated
forces to those from vasp (using the IVDW = 12 option). The
results are shown in figure 1. The vasp code usesRpot = 50.2Å
and Rcn = 20Å as defaults. With Rpot = 12Å and Rcn = 6Å,
the forces calculated from gpumd already agree quite well
with those from vasp. With increasing cutoff, the root mean
square errors (RMSEs) between gpumd and vasp implement-
ations, eventually diminish. While D3 is almost free in DFT
calculations, it can take a considerable portion of time for
MLPs, which is particularly true for the highly efficient NEP
approach. Therefore, a trike between accuracy and efficiency
must be made in selecting the D3 cutoffs in NEP-D3. We used
Rpot = 12Å and Rcn = 6Å for all the subsequent calculations
with gpumd.

2.2. Comparison between NEP-D3 and pure NEP for bilayer
graphene

We now compare the NEP-D3 and the pure-NEP approaches,
taking bilayer graphene systems as an example. To this end,

Figure 1. (a)–(c) The D3 forces computed from gpumd
implementation with Rpot = 12Å and Rcn = 6Å as compared to
those from vasp implementation with Rpot = 50.2Å and Rcn = 20Å.
For each MOF, we generated 10 structures with random cell
deformations (from −3% to 3%) and atom displacements (less than
0.1 Å), starting from optimized ones. (d) RMSE between gpumd
and vasp D3 forces as a function of Rpot in gpumd, where Rcn is
taken as Rpot/2.

we generated a training data set consisting of bilayer graphene
structures with different interlayer distances (from 2Å to
10Å) and relative lateral shifts (including the important AA,
AB, and saddle point (SP) stacking patterns and intermediate
ones) as well as those frommolecular dynamics (MD) simula-
tions (from 300K to 1500K) driven by the second-generation
reactive empirical bond-order potential [28] in combination
with the registry-dependent interlayer potential [29]. For all
the structures, we performed single-point DFT calculations
as details in appendix A to obtain energy, force, and virial
data that are needed for NEP training. Two different kinds of
reference data sets were considered: one based on the PBE
functional [30] and the other based on PBE combined with
D3 [14]. We labeled them as PBE and PBE-D3 data sets,
respectively.

To obtain a NEP-D3 model, we first trained a NEP model
based on the PBE data set. In this case, there is no need to
use a large rRc in NEP because the interactions from the PBE
functional are essentially short-ranged. We then took rRc = rAc
and tested the convergence of training accuracy with increas-
ing cutoff. All the other hyper-parameters of NEP are listed
in appendix B. Figure 2 shows that rRc = rAc = 4.5Å is quite
optimal. By adding up the D3 part, we then obtained a com-
pound potential model named as NEP(4.5Å, 4.5Å)-D3. For
the pure NEP models, we fixed the angular cutoff to 4.5Å
and considered three radial cutoffs: 6Å, 8Å, and 10Å. This
gives rise to three NEP models denoted as NEP(6Å, 4.5Å),
NEP(8Å, 4.5Å), and NEP(10Å, 4.5Å), respectively, which
were trained against the PBE-D3 data set.

The performances of the four models are compared in
table 1. The NEP(4.5Å, 4.5Å)-D3 model has the highest
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Figure 2. RMSEs of (a) energy, (b) force, and (c) virial for NEPs
with different cutoffs (with rRc = rAc ) trained against the
Perdew–Burke–Ernzerhof (PBE) data set.

Table 1. The RMSEs for energy (meV/atom), force (meVÅ−1), and
virial (meV/atom) of the NEP models versus the PBE-D3 reference
and the computational speeds (atom-step/second) in MD
simulations of bilayer graphene with 40 000 atoms using one
GeForce RTX 4090 GPU card.

NEP models Energy Force Virial Speed

NEP (4.5Å, 4.5Å)-D3 1.16 46.72 15.38 6.29× 10−6

NEP (6.0Å, 4.5Å) 1.28 47.45 17.33 2.05× 10−7

NEP (8.0Å, 4.5Å) 1.25 48.08 16.09 1.53× 10−7

NEP (10.0Å, 4.5Å) 1.29 49.60 17.44 8.50× 10−6

accuracy in terms of energy, force, and virial. However, it
has the lowest computational speed. The D3 part takes about
75% of the computational cost in the NEP(4.5Å, 4.5Å)-D3
model. This reflects the high computational cost of D3 and
also the high computational efficiency of NEP. Indeed, the
NEP approach has been shown to be far more computation-
ally efficient than other state-of-the-art MLPs [18]. Because
the dispersion interactions are weak forces, the RMSEs are
not the best indicators for evaluating the accuracy. To better
appreciate the higher accuracy brought about by the NEP-D3
approach compared to the pure NEP approach, we examine the
binding and sliding energies in detail below.

Figure 3 shows the binding energy curves from the various
calculation methods. The binding energies in bilayer graphene
cannot be well captured by the PBE functional, which is essen-
tially zero at an interlayer distance of 4.5Å, and this is the
reason why a cutoff of 4.5Å is sufficient for NEP to fit the
PBE data set (figure 3(a)). By adding D3 to PBE, the bind-
ing energies can be nicely captured and the results from D3
is very close to those from the many-body dispersion (MBD)

[31] (figure 3(b)), which is one of the most accurate dispersion
corrections presently available. By adding D3 to NEP(4.5Å,
4.5Å), the resulting model, NEP(4.5Å, 4.5Å)-D3 is very
close to PBE-D3 (figure 3(c)), and most of the errors come
from the NEP part, with small extra errors from the truncation
of theD3 part toRpot = 12Å andRcn = 6Å.Without adding up
D3, the pure NEP models with a relatively large radial cutoff
can also partially capture the binding energies, but the curves
are not as smooth as that from NEP-D3 (figure 3(d)–(f)). The
best results were obtained with a radial cutoff of 8Å, which
means that increasing the radial cutoff in NEP is not a feasible
way to improve the accuracy regarding the vdW interactions.
To sum up, the NEP(4.5Å, 4.5Å)-D3 model outperform all
the pure NEP models for describing the binding energies in
bilayer graphene. It is expected that similar conclusions can
be drawn for dispersion-dominated binding energies in layered
materials.

In contrast to the binding energies, the sliding energies of
bilayer graphene with equilibrium interlayer spacing (about
3.4Å) are not dominated by the D3 part. Therefore, as shown
in figure 4(a), results from NEP(4.5Å, 4.5Å) are already very
close to those from PBE-D3 and adding D3 does not make sig-
nificant changes. However, the resulting NEP(4.5Å, 4.5Å)-
D3model significantly outperforms the pure NEPmodels with
larger radial cutoffs (figure 4(b)). One possible reason is that
the long radial cutoff in a pure NEP model introduces extra
features that are not needed for describing the sliding ener-
gies and thus complicates the training process. Using too large
a cutoff than needed, the construction of a MLP becomes
more demanding since a large configuration space has to be
explored and more descriptor components are needed to dis-
tinguish the atom environments [32]. Indeed, among the three
pure-NEP models, NEP(6Å, 4.5Å) performs the best and
NEP(10Å, 4.5Å) the worst regarding the sliding energies
(figure 4(b)).

2.3. Applications to heat transport in MOFs

After confirming the reliability of the combined NEP-D3
approach, we show its usefulness in practical MD simulations.
In a previous work [27], some of the present authors have
studied heat transport in three typical MOFs (MOF-5, ZIF-
8, and HKUST-1) using MD simulations with NEP models.
The reference DFT data used for training these NEP models
have no dispersion corrections. Because of the porous struc-
tures in MOFs, vdW interactions between the organic chains
are expected to have noticeable effects in the structural and
dynamic properties. Here we study the effects of dispersion
interactions on the thermal conductivity in the MOFs.

We used the homogeneous non-equilibrium molecular
dynamics (HNEMD) method [33] to calculated the thermal
conductivity. The MD simulation details are consistent with
the previous work [27] and the relevant inputs are given
in appendix C. A driving force with a parameter Fe = 2×
10−4Å−1 was used to drive the system out of equilibrium,
and we have confirmed that it is sufficiently small to keep
the system within the linear-response regime. To be consistent
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Figure 3. Binding energy of AB-stacked bilayer graphene as a function of the interlayer distance computed from various approaches as
indicated in each panel. The RMSE between the two curves in each panel is indicated. See text for details.

Figure 4. Sliding energies along the AA-AB-SP path of bilayer
graphene with a interlayer spacing of 3.4Å computed from various
approaches. Atoms from the top and bottom layers have different
colors.

with the previous work [27], we have used a supercell with
5× 5× 5 conventional cells (53 000 atoms), which was tested
to be sufficiently large to eliminate finite-size effects. The sys-
tem was first equilibrated in the isothermal-isobaric ensemble
(300K and zero GPa) to account for thermal expansion
effects.

Figure 5. (a) Cumulative average of the thermal conductivity at
300K as a function of simulation time and (b) spectral phonon mean
free path as a function of phonon frequency for MOF-5 (top), ZIF-8
(middle), and HKUST-1 (bottom). The converged thermal
conductivity values with error estimates (from five independent
runs) obtained from NEP and NEP-D3 are indicated.

Figure 5 compares the thermal transport results at 300K
using the previously constructed pure NEP models [27] and
the combined NEP-D3 models obtained by adding up D3
(Rpot = 12Å, Rcn = 6Å). For all the MOFs, the introduction
of dispersion interactions consistently reduces the thermal
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conductivity, and the average amount of reduction being about
10% (figure 5(a)). In the presence of dispersion interactions,
the phonon mean free paths of the low-frequency phonons
(ω/2π < 1 THz) are reduced to some degree, but are still at the
sub-micron scale (figure 5(b)). More importantly, the ∼10%
reduction of the thermal conductivity inMOF-5 still leaves the
discrepancy between the calculated (0.57 ± 0.02Wm−1K−1)
and measured (0.32Wm−1K−1) results [34] unresolved.

3. Summary and conclusions

In summary, we have made a GPU implementation of the D3
dispersion correction into the gpumd package and enabled its
integration with NEP to form a combined NEP-D3 model. We
demonstrated the superior accuracy of the NEP-D3 approach
than the pureNEP approach by using bilayer graphene systems
as an example, for which the dispersion interactions between
the two layers play an important role for the binding energies.
Although the dispersion interactions are not responsible for the
sliding energies between the two layers, the presence of D3 in
NEP-D3 allows for using a relatively short cutoff in the NEP
part, which indirectly leads to better description of the sliding
energies by the NEP part. The D3 dispersion correction we
implemented can be readily added to available NEP models
that have been trained against reference data without consid-
ering dispersion correction. As an example, we showed that
adding D3 dispersion correction to the previous NEP mod-
els for MOFs [27] leads to about 10% reduced thermal con-
ductivity. The NEP-D3 approach is expected to find broad
applications to a diverse range of materials for which disper-
sion interactions are important, such as molecular crystals,
layered materials, polymers, and porous structures, elucidat-
ing the effects of dispersion interactions on physical properties
such as thermal expansion, phase transition, and gas diffusion
and adsorption.

Data availability statement

Complete input and output files for the NEP training of bilayer
graphene and MOFs are freely available at https://gitlab.com/
brucefan1983/nep-data. The source code and documentation
for gpumd are available at https://github.com/brucefan1983/
GPUMD and https://gpumd.org, respectively. The D3 disper-
sion correction is available starting from GPUMD-v3.9.
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Appendix A. Details on the DFT calculations

The DFT calculations were performed with the projector-
augmented wave method [35] implemented in vasp [22, 23].
We set a threshold of 1× 10−7 eV for the electronic self-
consistent loop, with an energy cutoff of 850 eV for the
plane-wave-basis set. We sampled the Brillouin zone using
a Γ-centered grid with a k-point spacing of 0.15Å−1 and a
Gaussian smearing with a width of 0.1 eV. The contents of the
INCAR input file for vasp are given below.

GGA = PE
LREAL = Auto
ENCUT = 850
IVDW = 12 #remove this for PBE without D3
PREC = Accurate
KSPACING = 0.15
KGAMMA = .TRUE.
ALGO = Normal
NSW = 1
IBRION = -1
ISMEAR = 0
SIGMA = 0.1
EDIFF = 1× 10−07

NELM = 150

Appendix B. Inputs for training the NEP models

The NEP models can be trained using the nep executable in
the gpumd package. The relevant hyperparameters are spe-
cified in the nep.in input file. The contents of the nep.in
input file for training the NEP(4.5Å, 4.5Å) model of bilayer
graphene are given below. To train the NEP models with dif-
ferent radial cutoffs, one only needs to modify the parameters
of the cutoff keyword.

type 1 C
version 3
cutoff 4.5 4.5
n_max 8 8
basis_size 12 12
l_max 4 2 0
neuron 50
lambda_1 0.05
lambda_2 0.05
lambda_e 1.0
lambda_f 1.0
lambda_v 0.1
batch 10 000
population 50
generation 300000

Appendix C. Inputs for thermal conductivity
calculations

MD simulations with pure NEP models and NEP-D3 mod-
els can be performed by using the gpumd executable in the
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gpumd package. The controlling parameters are specified in
the run.in input file. The contents of the run.in input file for
calculating the thermal conductivity using a NEP-D3 model
are given below. To switch off the D3 contribution, one just
needs to remove the line starting with the keyword dftd3.

potential nep.txt
dftd3 pbe 12 6
velocity 300

ensemble npt_ber 300 300 100 0 10 1000
time_step 0.5
run 200 000

ensemble nvt_nhc 300 300 100
compute_hnemd 1000 0 0 2e-4
compute_shc 10 500 2 500 200
run 4000000

ORCID iDs

Penghua Ying https://orcid.org/0000-0002-5758-2369
Zheyong Fan https://orcid.org/0000-0002-2253-8210

References

[1] Behler J 2016 J. Chem. Phys. 145 170901
[2] Musil F, Grisafi A, Bartók A P, Ortner C, Csányi G and

Ceriotti M 2021 Chem. Rev. 121 9759–815
[3] Geim A and Grigorieva I 2013 Nature 499 419–25
[4] Mandelli D, Ouyang W, Urbakh M and Hod O 2019 ACS

Nano 13 7603–9
[5] Walker A M, Civalleri B, Slater B, Mellot-Draznieks C,
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