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Abstract
We propose an efficient approach for simultaneous prediction of thermal and electronic
transport properties in complex materials. Firstly, a highly efficient machine-learned
neuroevolution potential (NEP) is trained using reference data from quantum-mechanical
density-functional theory calculations. This trained potential is then applied in large-scale
molecular dynamics simulations, enabling the generation of realistic structures and accurate
characterization of thermal transport properties. In addition, molecular dynamics simulations of
atoms and linear-scaling quantum transport calculations of electrons are coupled to account for
the electron-phonon scattering and other disorders that affect the charge carriers governing the
electronic transport properties. We demonstrate the usefulness of this unified approach by
studying electronic transport in pristine graphene and thermoelectric transport properties of a
graphene antidot lattice, with a general-purpose NEP developed for carbon systems based on an
extensive dataset.
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1. Introduction

Thermal and electronic transports are two fundamental prop-
erties of a material. For simple solids, computational meth-
ods based on the electron and phonon Boltzmann transport
equations [1] have been widely used to compute the transport
propertiesmediated by the heat and charge carriers. There are a
handful computational programs available for doing these cal-
culations, such as shengbte [2], phono3py [3], kaldo [4],
and gpupbte [5] for thermal transport and epw [6], perturbo
[7], and phoebe [8] for electronic transport. However, these
methods can only efficiently deal with relatively simple sys-
tems and are generally not applicable to complex systems that
cannot be properly represented by small periodic supercells.

To efficiently compute transport properties in complex sys-
tems one must resort to linear-scaling methods, i.e. methods
with the computational cost that scales linearly with respect
to the number of atoms in the periodic supercell. For thermal
transport, molecular dynamics (MD) simulation is such a
linear-scaling method at the atomistic level [9], provided that
the interatomic potential used is a classical one and has a
finite cutoff. Nowadays, machine-learned potentials (MLPs)
[10] have been routinely applied inMD simulations of thermal
transport. Particularly, the neuroevolution potential (NEP)
[11–13] has been developed with a focus on thermal transport
applications and has excellent computational efficiency.

For electronic transport, there are also linear-scaling
quantum transport (LSQT) methods [14] based on semi-
empirical tight-binding (TB) models. The electron-phonon
coupling in LSQT calculations can be captured by the
bond-length dependent hopping integrals in the electron TB
Hamiltonian [15]. This has been explored using either specific
phonon dynamics [16, 17] or MD simulations [18–20]. Static-
disorder approximation of the electron-phonon coupling has
also been used for organic crystals [21, 22], graphene [23]
and a carbon nanotube [24]. Among these, the combined MD-
LSQT approach is the most flexible one, but it has not been
widely used. The major reason is that there has been no accur-
ate interatomic potential to drive MD simulations for a general
system. Another reason is that there is so far no publicly avail-
able implementation of this approach.

In this paper, we propose to combine machine-learning
molecular dynamics (MLMD), namely, MD driven by a MLP,
and LSQT with a bond-length-aware TB model, to study the
thermal, electronic, and thermoelectric transport properties of
complex materials that are beyond the reach of conventional
methods. We call the combined method MLMD-LSQT. For
the MLP, we choose to use the highly efficient NEP approach
[11–13] as implemented in the open-source graphics pro-
cessing units molecular dynamics (gpumd) package [25]. By
training against quantum-mechanical density functional the-
ory (DFT) data, a NEP model can be constructed on demand,
which can then be used to perform large-scale MD simula-
tions to obtain realistic structures and thermal transport prop-
erties. For the LSQT part, we also implement it into the gpumd
package (version 3.9) to couple electron and ion motions. To
show the usefulness of this unified approach, we construct a

general-purpose NEP for carbon systems and study thermal,
electronic, and thermoelectric transport properties of patterned
graphene that has large-scale structural features.

2. The MLMD-LSQT approach

At the core of our method is the NEP approach [11–13] for
MLP construction. It uses Chebyshev and Legendre polyno-
mials to construct a local atom-environment descriptor of a
given atom which is then mapped to the site energy Ui of this
atom via a feed-forward neural network. The free parameters
in the neural network as well as the descriptor are optimized
through theminimization of a loss function using an evolution-
ary algorithm. The loss function is defined as a weighted sum
of the root mean square errors (RMSEs) of energy, force, and
virial between predictions and DFT target results in combin-
ation with regularization terms. This method as implemented
in gpumd [25] has been shown to be able to achieve simul-
taneously the accuracy of DFT calculations and the computa-
tional cost of empirical potentials, allowing for large-scaleMD
simulations up to 8.1 million atoms using a single 40-gigabyte
graphics processing units (GPU) card [26].

The LSQT method can be used to calculate electrical con-
ductivity in large systems, but the prerequisite is to construct
an electron Hamiltonian incorporating electron-phonon coup-
ling and other disorders [14]. By using a bond-length-aware
TB model to configurations generated from MD simulations,
electron-phonon coupling and other structural disorders can
be effectively described. For dissipative electron transport,
there are two equivalent ways to compute the electrical con-
ductivity, one is based on the velocity-auto-correlation and
the other is based on the mean-square displacement [14]. For
the purpose of the present work, we found that the velocity-
auto-correlation approach is more convenient because the time
intervals used in the calculations are quite small, and themean-
square-displacement approach is only beneficial when the time
intervals are large [27].

In the velocity-auto-correlation approach, the electrical
conductivity at energy E and correlation time t can be calcu-
lated as an integral

Σ(E, t) =
2e2

Ω

ˆ t

0
Tr

[
δ
(
E− Ĥ

)
Re

(
V̂V̂(τ)

)]
dτ, (1)

where e is the elementary charge, Ω is the system volume, Ĥ
is the electron Hamiltonian operator, δ(E− Ĥ) is the energy
resolution operator, V̂ is the velocity operator, and V̂(τ) =
eiĤτ V̂e−iĤτ is the time-evolved velocity operator. To facilitate
the discussion, we denote the trace in the integral as C(E, τ).
The coupled MLMD-LSQT algorithm can be represented as
follows:

(i) Starting from an initial structure, runMLMD for a number
of steps in the isothermal or isothermal-isobaric ensemble
to achieve equilibrium.

(ii) Perform MLMD simulation for a number of steps:
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(a) Evolve the atomic system from step n− 1, {ri(n∆t−
∆t)}, to step n, {ri(n∆t)}, by a time step of ∆t accord-
ing the NEP interatomic potential.

(b) Calculate the electron Hamiltonian and velocity operators
at step n according to the atom positions {ri(n∆t)}.

(c) Calculate C(E,n∆t) using the electron Hamiltonian at
the current step. In this step, linear-scaling techniques
[14], including sparse matrix-vector multiplication, ran-
dom phase approximation of trace, Chebyshev expansion
of quantum evolution operator, and kernel polynomial
method [28] for energy resolution operator, are used.

After obtaining C(E, τ) at a number of discrete time points,
it can be numerically integrated to calculate the electrical con-
ductivity according to equation (1). This approach was imple-
mented into the gpumd package and was available starting
from version 3.9. Besides, the electronic density of states
(DOS) was also implemented according to the following
expression:

ρ(E) =
2
Ω
Tr

[
δ
(
E− Ĥ

)]
. (2)

3. Case study of a graphene antidot lattice

As a proof of concept, we apply the MLMD-LSQT approach
to study the thermoelectric transport in a GAL [29], also
known as graphene nanomesh [30], a graphene sheet with pat-
terned holes. Thermoelectric effects in graphene nanostruc-
tures have been extensively studied, andGALs have been iden-
tified as one of the promising candidates for good thermoelec-
tric materials [31]. However, previous works have only studied
the ballistic electronic transport regime [32–34], without con-
sidering finite-temperature effects.

Figure 1 shows the atomistic structure of the system
under investigation. The simulation domain cell of the GAL
sample contains 187 200 atoms and has a dimension of about
88.5 nm × 76.7 nm in the xy-plane, which can be considered
as a two-dimensional (2D) system when periodic boundary
conditions are applied to the in-plane directions. The thickness
of the systemwas taken as 0.335 nm in calculating the volume.
The primitive cell for the GAL contains 156 atoms, a com-
plexity that challenges conventional numerical methods based
on the electron and phonon Boltzmann transport equations.
However, this kind of complex structure are well-suited for the
MLMD-LSQT approach. To construct the Hamiltonian and
velocity operators, we employed a pz-orbital TB model with
a bond-length dependent hopping parameter

Hij = t0

(
r0
rij

)2

, (3)

where t0 = −2.7 eV, r0 = 1.42 Å, and rij is the distance
between the atom pair i and j. The model with a fixed hop-
ping parameter t0 has been used in previous works [35, 36] that

did not account for electron-phonon coupling. The real-space
Hamiltonian and velocity (assuming to be in the x direction)
operators can be written as

Ĥ=
∑
i,j

Hij|i⟩⟨ j|; (4)

V̂=
i
h̄

∑
i,j

(xj− xi)Hij|i⟩⟨ j|, (5)

where xi is the x-position of atom i.

3.1. Training a general-purpose NEP for carbon systems

Although for the scope of the current work, it suffices to train
a specialized NEP model for GAL, it is our broader object-
ive to train a general-purpose carbon potential based on the
extensive dataset as used for constructing a Gaussian approx-
imation potential [37]. Using this dataset and the hyperpara-
meters given in appendix A, we trained a general-purpose
NEPmodel for carbon systems. The training results are shown
in figure 2. After a few hundred thousand training steps, the
RMSEs of energy, force, and virial all converge (figure 2(a)),
and their converged values are 45meV/atom, 599meV/Å, and
105meV/atom, respectively. The predicted data are compared
to the DFT reference ones in figures 2(b)–(d). The seemingly
large RMSE values are typical for general-purpose carbon sys-
tems, as similar ones were reported in or can be extracted from
previous works [13, 37–40].

3.2. Thermal transport

For a complete study of thermoelectric transport, the lattice
(phonon) thermal conductivity κph must be evaluated. To this
end, we calculated κph for the GALmodel with 187 200 atoms
using the HNEMD method [41]. In this method, an external
driving force

Fext
i = Fe ·

∑
j ̸=i

(
∂Uj

∂rj i
⊗ ri j

)
(6)

is exerted on each atom i, driving the system out of equilib-
rium. Here, Fe is the driving force parameter with the dimen-
sion of inverse length and ri j ≡ rj− ri, ri being the position
of atom i. After a steady state is achieved, the lattice thermal
conductivity tensor καβ

ph can be computed from the relation

⟨Jα⟩
TΩ

=
∑
β

καβ
ph F

β
e , (7)

where T is the system temperature, Ω is the system volume,
and ⟨Jα⟩ is the ensemble average of the heat current [42]

J=
∑
i

vi ·
∑
j ̸=i

(
∂Uj

∂rj i
⊗ ri j

)
. (8)

In this case study, we only consider the condition of 300 K
and zero in-plane pressure. The input script for gpumd is
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Figure 1. (a) Atomistic structure of an example graphene antidot lattice (GAL) system studied in this work. (b) Illustration of the primitive
cell containing 156 atoms, enclosed by the parallelogram.

Figure 2. (a) Evolution of the energy, force, and virial loss values
as a function of the number of training generations for a
general-purpose NEP for carbon systems based on an extensive
dataset [37]. (b)–(d) Comparison between NEP predictions and DFT
reference values for energy, force, and virial. The RMSE values are
indicated in each panel.

given in appendix B. The time convergence of κph is shown
in figure 3(a). We have performed 4 independent simulations
in both the x and the y directions and averaged the results over
the two directions as the system is essentially isotropic.

For the GAL in our case study, the simulation temperat-
ure (300 K) is much lower than the Debye temperature (on
the order of 2000 K), and the classical MD simulation thus

Figure 3. (a) Phonon thermal conductivity κph as a function of the
homogeneous non-equilibrium molecular dynamics (HNEMD)
production time for GAL at 300K. (b) The classical and
quantum-corrected spectral thermal conductivity as a function of the
phonon frequency ω/2π.

significantly overestimates the modal heat capacity, which
in turn leads to an overestimation of the thermal conduct-
ivity. Fortunately, there exists a feasible correction for the
missing quantum statistics, as has been successfully applied
to amorphous [43, 44] and fluid [45] systems described by
NEP models. In this quantum correction method, the spec-
tral thermal conductivity κ(ω) as calculated from the HNEMD
method [41] is multiplied by a quantum-to-classical factor

4
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p(x) = x2ex/(ex− 1)2, where x= h̄ω/kBT, ω is the phonon
frequency, h̄ is the reduced Planck constant, and kB is the
Boltzmann constant. The spectral decomposition of κph cor-
responding to the classical results is depicted in figure 3(b),
where the quantum-corrected results are also shown. The
classical value of κph is 13.3 Wm−1K−1, which becomes
6.7 Wm−1K−1 after quantum correction. The quantum correc-
ted value will be used later.

3.3. Electronic and thermoelectric transports

We now move to study the electronic transport properties.
Appendix C presents the input script and more calculation
details. As a sanity check, we provide results for pristine
graphene using the same TB model in appendix D.

The time-dependent electrical conductivity Σ(E, t) con-
verges in the diffusive transport regime, and one can obtain the
so-called semi-classical electrical conductivity Σ(E) by aver-
aging Σ(E, t) over a proper range of correlation time,

Σ(E) =
1

t2 − t1

ˆ t2

t1

Σ(E, t)dt. (9)

According to figure 4(a), it is a good choice to set t1 = 80 fs and
t2 = 100 fs. The semi-classical electrical conductivity Σ(E)
can be regarded as the transport distribution function (TDF)
[46–51] for thermoelectric transport. The calculated TDF as
well as DOS are presented in figure 4(b). The anti-dots induce
a considerable band gap of about 0.8 eV. This band gap is then
also the transport gap.

From the TDF, we then calculated the transport coefficients
at 300K for a range of chemical potential µ. We first define the
functionals (n= 0,1,2) of the TDF:

Xn (µ,T) =
ˆ [

−∂f(E,µ,T)
∂E

]
EnΣ(E)dE, (10)

where

f(E,µ,T) =
1

exp
(
E−µ
kBT

)
+ 1

(11)

is the Fermi–Dirac distribution. The electrical conductivity
σ(µ,T), Seebeck coefficient S(µ,T), and electronic thermal
conductivity κel(µ,T) can be expressed in terms of these func-
tionals as

σ (µ,T) = X0 (µ,T) ; (12)

S(µ,T) =− 1
eT

[
X1 (µ,T)
X0 (µ,T)

−µ

]
; (13)

κel (µ,T) =
1
e2T

[
X2 (µ,T)−

X2
1 (µ,T)
X0 (µ,T)

]
. (14)

The calculated results are presented in figures 4(c)–(e). The
finite-temperature electrical conductivity σ(µ,T) resembles
the TDF, but with smearing resulting from the Fermi–Dirac
distribution. The Seebeck coefficient has a negative peak for

Figure 4. (a) Electrical conductivity Σ(E, t) as computed by using
equation (1) at E= 0.65 eV. (b) Transport distribution function
(TDF) Σ(E) and electronic density of states (DOS). (c)–(f)
Electrical conductivity σ(µ,T), Seebeck coefficient S(µ,T),
electronic thermal conductivity κel(µ,T), and figure of merit
zT(µ,T) for a range of chemical potential µ at T= 300 K.

electrons and a positive peak for holes. The electronic thermal
conductivity resembles the electrical conductivity in shape
which is in line with the Wiedemann-Franz law.

Based on these transport coefficients and the (quantum-
corrected) phonon thermal conductivity κph, one can define the
dimensionless figure of merit as

zT(µ,T) =
S2 (µ,T)σ (µ,T)
κph +κel (µ,T)

T. (15)

Due to the competition between the various transport coeffi-
cients, zT develops peaks for both electron and hole transport,
at µ= 0.47 eV and −0.44 eV, respectively. The transport is
asymmetric between electron and hole, showing a maximum
zT = 0.47 for hole and a maximum zT = 0.16 for electron.

Experimentally, thermoelectric transport properties have
been measured for single- and bi-layer graphene nanomeshes
with the neck width down to 8 nm [52]. This neck width
between the nearest antidot pairs is a few times larger than
that we studied and the measured thermal conductivity values
(of the order of 100Wm−1K−1) are significantly larger than
our prediction. On the other hand, there are geometrical dis-
orders in the experimental samples, namely, variations in the
positions and sizes of the antidots, which, according to pre-
vious calculations [35, 36], can lead to suppressed electrical
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conductivity. Therefore, the relatively high zT values we pre-
dicted remain a challenge for experimental realization.

4. Summary and conclusions

In summary, we have introduced a numerical approach for
simultaneous prediction of thermal and electronic transport
properties in complex materials. This approach, based on
MLMD and LSQT, offers an excellent efficiency with a com-
putational cost that scales linearly with the system size. For a
given material, a highly efficient NEP is first constructed on
demand. This MLP can be used to perform large-scale MD
to obtain realistic structures and accurate thermal transport
properties. By combining the time-evolution of electrons and
atoms during the MD simulation, electron-phonon scattering
and other disorders for the charge carriers can be naturally
captured and the various electronic transport properties can be
obtained.

As an illustrative example, we have investigated the ther-
moelectric transport properties of a type of graphene antidot
lattices (GALs) using our herein developed general-purpose
NEP for carbon systems, predicting its relatively high ther-
moelectric efficiency at room temperature. We recognize the
necessity of future work to conduct a more comprehensive
study of the thermoelectric transport in GALs using our pro-
posed approach. Subsequent research endeavors may consider
integrating machine-learning techniques to explore the vast
design space, similar to the methods employed in thermal
transport studies in these systems [53, 54].

The accuracy of electronic transport calculations depends
on both the machine-learned potential driving the MD and the
environment-dependent TB model for electrons, which cap-
tures the electronic structures and electron-phonon coupling
strength. While the NEP approach serves as a feasible candid-
ate for accurate and efficient machine-learned potential, the
development of accurate and efficient environment-dependent
TB models using machine-learning techniques remains relat-
ively unexplored. We believe it is possible to extend the NEP
approach to the TB model and integrate it into our unified
approach. This possibility is left for future work.

Furthermore, it is worth noting that the classical statistics
in MD simulation might also lead to overestimated electron-
phonon coupling due to overpopulated high-frequency phon-
ons. A quantum correction scheme similar to that used in
phonon thermal transport may be feasible. However, this topic
is also left for future investigation.
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Appendix A. Inputs for training the NEP model

NEP models can be trained using the nep executable in the
gpumd package. The relevant hyperparameters are specified
in the nep.in input file. The contents of the nep.in input file
for training the general-purpose model of carbon systems are
given below.

type 1 C
version 4
cutoff 7 4
n_max 12 8
basis_size 16 12
l_max 4 2 1
neuron 100
lambda_1 0.0
lambda_e 1.0
lambda_v 0.1
batch 8000
population 100
generation 2000000

Appendix B. Inputs for phonon thermal
conductivity calculations

MD simulations with NEP models can be performed by using
the gpumd executable in the gpumd package. The controlling
parameters are specified in the run.in input file. The contents
of the run.in input file for calculating the thermal conductiv-
ity are given below.

# setup
potential nep.txt
velocity 300

# equilibration
ensemble npt_ber 300 300 100 0 0 0

1000 1000 1000 1000
time_step 1

6
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run 100000

# production
ensemble nvt_nhc 300 300 100
compute_hnemd 1000 1e-4 0 0
compute_shc 2 250 0 1000 400.0
run 1000000

Appendix C. Inputs for electronic transport
calculations

The contents of the run.in input file for calculating the elec-
tronic transport properties are given below. The time step in
the production stage is chosen to be small enough (0.1 fs)
to ensure accurate integration in equation (1). The keyword
compute_lsqt invokes the LSQT calculations. This is a new
keyword introduced in GPUMD-v3.9 during the course of the
present study. Here are the meanings of the parameters for this
keyword:

• The first parameter x means that the transport is along the
x direction. We have calculated 10 times along the x direc-
tions and also 10 times along the y direction and averaged
the results.

• The second parameter refers to the number of Chebyshev
moments in the kernel-polynomial method [28] for both the
DOS and conductivity calculations. A value of 3000 is large
enough here.

• The next three parameters are respectively the number of
energy points to be considered, the minimum energy and the
maximum energy. Here we calculated the transport proper-
ties from −8.1 eV to 8.1 eV, with an interval of 1.62meV.

• The last parameter is an energy threshold that needs to be
larger than the energy range of the TB model. Here, a value
of 8.2 eV is sufficient. This parameter can be determined by
a trial-and-error approach.

#setup
potential nep.txt
velocity 300

# equilibration
ensemble npt_ber 300 300 100 0 0 0

1000 1000 1000 1000
time_step 1
dump_exyz 100000
run 100000

# production
ensemble nve
time_step 0.1
compute_lsqt x 3000 10001 -8.1 8.1 8.2
run 1000

Appendix D. Benchmark study of pristine graphene

To model electronic transport in pristine graphene, we adop-
ted the same TB model as used for GAL. We constructed
an almost square-shaped graphene sheet with 864 000 atoms.

Figure D1. (a) Electronic density of states (DOS). (b) Electrical
conductivity Σ(E, t) as computed by using equation 1 at E= 0 eV
and E= 0.2 eV. (c) Carrier concentration n as a function of
chemical potential µ at T = 300K. (d) Mobility as a function of
carrier concentration n at T = 300 ‘K. The predicted mobility
values are in excellent agreement with the measured values reported
by Novoselov et al for the very first graphene-based field effect
transistor at room temperature [55].

The run.in input file used for GAL also applies to pristine
graphene, but the time step in the production stage is changed
to 1 fs due to the much larger relaxation times in pristine
graphene.

Results for the temperature of T = 300K are shown in
figure D1. The DOS (figure D1(a)) resembles that for pristine
graphene at zero temperature [27], even though we are con-
sidering 300 K. The time-dependent electrical conductivity
Σ(E, t) is well-converged up to t= 1000 fs for E= 0.2 eV, but
not for the Dirac point E= 0 eV (figure D1(b)). Fortunately,
for realistic carrier concentrations (of the order of 1012 cm2),
the relevant energies are away from the Dirac point, as shown
in figure D1(c). The carrier concentration (positive values for
electrons and negative for holes) is calculated as

n(µ,T) =
ˆ

ρ(E) f(E,µ,T)dE. (D1)

From the electrical conductivity σ(µ,T) and the carrier con-
centration, we can obtain the carrier mobility as

mobility=
1
e
σ (µ,T)
|n(µ,T) |

. (D2)

The results are shown in figure D1(d). The mobility is as high
as about 10 000 cm2 Vs−1 even at a high carrier concentra-
tion of n= 5× 1012 cm−2, and reaches about 26 000 cm2 Vs−1

when n is reduced to 1012 cm−2. These values are in excellent
agreement with the measured values reported by Novoselov
et al for the very first graphene-based field effect transistor at
room temperature [55].
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