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ABSTRACT: Surface defects and their mutual interactions are anticipated to affect the superlubric sliding of
incommensurate layered material interfaces. Atomistic understanding of this phenomenon is limited due to the high
computational cost of ab initio simulations and the absence of reliable classical force-fields for molecular dynamics
simulations of defected systems. To address this, we present a machine-learning potential (MLP) for bilayer
defected graphene, utilizing state-of-the-art graph neural networks trained against many-body dispersion corrected
density functional theory calculations under iterative configuration space exploration. The developed MLP is
utilized to study the impact of interlayer bonding on the friction of bilayer defected graphene interfaces. While a
mild effect on the sliding dynamics of aligned graphene interfaces is observed, the friction coefficients of
incommensurate graphene interfaces are found to significantly increase due to interlayer bonding, nearly pushing
the system out of the superlubric regime. The methodology utilized herein is of general nature and can be adapted to
describe other homogeneous and heterogeneous defected layered material interfaces.
KEYWORDS: Machine-learning potentials, Graphene interfaces, Structural superlubricity, Interlayer bonding,
Molecular dynamics, Atomic defects, Nanoscale friction

In the last two decades, significant advancements in
comprehending the atomic mechanisms underlying
friction have led to the observation of ultralow, and even

near-zero, friction (with friction coefficients below 10−3−10−4)
at incommensurate microscale interfaces of two-dimensional
(2D) materials, a phenomenon known as structural super-
lubricity.1−5 Scaling up this phenomenon toward the meso-
and macroscales bears great technological potential for the
reduction of energy loss and material wear in (electro-)
mechanical devices. This, however, inevitably implies the
appearance of multigrain surfaces with corrugated grain
boundaries and intrinsic surface defects, which may introduce
additional energy dissipation routes and eliminate super-
lubricity. Recently, the mechanisms of friction at grain

boundaries have been studied theoretically, computationally,
and experimentally, demonstrating counterintuitive phenom-
ena including negative differential friction coefficient behavior,
where friction reduces with external load.6 Lattice defects, such
as vacancies, Stone−Wales defects, and surface edges, however,
may hinder superlubricity via other mechanisms, such as elastic
pinning and interlayer covalent bond formation.1,7 Under-
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standing the microscopic origin of such phenomena, while
being highly desirable, is challenging in practice due to the
complex reactive dynamics invoked by such defects.8

In principle, ab initio simulations provide the desired toolset
for meeting this challenge.9,10 Nonetheless, due to their
computational demand, such studies are limited to relatively
small model systems and short time-scales. Molecular
dynamics (MD) simulations based on classical force-fields,
parametrized against first-principles calculations for specific
model systems, present an alternative that often balances well
between computational efficiency and physical accuracy for the
description of the anisotropic nature of the interactions in
pristine layered interfaces.11−21 Such force-fields, however,
must be hand-tailored to describe desired interactions and
phenomena, where the inclusion of ingredients required to
describe dynamical bond formation and rupture is highly
nontrivial, especially under shear motion and the burden of
normal load. To meet this need, one may resort to the
emerging technology of machine-learning potentials
(MLPs),22−25 which circumvents the need for explicit physical
expressions to describe specific interactions and translates ab
initio data directly into classical interatomic forces. This does
not come without a price, as the physical understanding of the
interatomic interactions is lost in the process while allowing
the treatment of highly complex chemically reactive scenarios.
Recent progress in the field of MLPs has enabled the modeling
of reactive material processes, such as the proton transport in
titanium dioxide-water interfaces,26 deposition of tetrahedral
amorphous carbon,27,28 and the description of the phase
diagrams of water29 and dense hydrogen.30

MLPs primarily comprise a complex functional to describe
high-dimensional potential energy surfaces (PESs), which is
trained against ab initio data (typically density functional
theory (DFT) total energies and their spatial gradients) of a set
of structural configurations. Often, the atomic positions are
first translated into a set of descriptors (e.g., interatomic
distances, angles, and other symmetry functions), which obey

desired behavior under specific symmetry operations, such as
invariance of energy under rotation, translation, and
permutation of identical atoms.31 Different learning ap-
proaches include linear regression,32,33 kernel-based meth-
ods,31,34 and neural networks (NNs).35,36 Recently, graph
neural network (GNN) interatomic potentials22 became
popular due to their superior accuracy over previous MLP
models in describing the interactions in small molecules,
amorphous carbon, and liquid water. This can be attributed to
their message-passing architectures and equivariant feature
representations for the atomic environments.37−39

In the present study, we develop a GNN potential for bilayer
defected graphene based on the neural equivariant interatomic
potential (NequIP) scheme.38 Using an iterative learning
approach, we explore the vast space of sliding configurations,
including interlayer bonding scenarios. We consider the sliding
dynamics of both aligned (commensurate) and twisted
(incommensurate) interfaces, showing a relatively mild
defect-induced increase of the coefficient of friction (COF)
for the former and a significant COF increase for the latter to
the extent of pushing the system nearly out of the superlubric
regime.

RESULTS AND DISCUSSION
Our iterative learning NequIP approach for defected bilayer
graphene is illustrated in Figure 1. Three bilayer systems
denoted by V0V0 (pristine bilayers), V0V1 (a single vacancy on
the top layer and a pristine bottom layer), and V1V1 (a single
vacancy in each layer) were used as reference structures (see
Figure 1a). The initial reference data set included single-point
total DFT (PBE+MBD, see Methods section) energies and
atomic forces obtained for different interlayer distances,
aligned stacking modes, manually deformed structures, and
snapshot configurations taken from classical (for V0V0) and
DFT-based (for the defected contacts) MD simulations under
different temperatures (see Supporting Information (SI)
section S1 for further details). This reference data set was

Figure 1. Schematic representation of the iterative process applied to construct the NequIP model. (a) The initial reference structures were
obtained from MD simulations and manual manipulations for binding, sliding, and deformation scenarios. Single point DFT (PBE+MBD)
calculations were performed for selected structures, forming training and validation sets. (b) Schematic diagram of the message-passing
algorithm in the GNN potential. (c) Demonstration of active selection of outlier structures (a representative structure is shown in the inset)
in V1V1 (having a single vacancy in each layer) bilayer sliding dynamics to be included in the next training iteration. (d) Illustration of the
evolution of the test set force and energy RMSEs with iteration cycle.
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split into two groups, namely, training and validation. The
former subset served to train the MLP, whereas the latter
subset served to monitor the error for preventing overfitting.
The splitting was based on farthest point sampling
(FPS),36,40,41 by performing a principal components analysis
and choosing a set of sufficiently distant random points to

serve as the training set and the remaining points to serve as
the validation set (see SI section S2 for further details).
After obtaining the initial NequIP model, we initiated the

iterative learning process, where we performed reactive sliding
dynamics MD simulations of the V1V1 bilayer system, under
different normal loads, using the present NequIP model (see

Figure 2. Comparisons between NequIP predictions and DFT calculations. Parity plots for (a) total energies and (b) atomic forces obtained
for the training (blue), validation (orange), and test (green) data sets. (c) DFT (blue) and NequIP (orange) binding energy curves for AB
stacked bilayer graphene. (d) NequIP (left) and DFT (middle) sliding PES for bilayer graphene, and their difference (right). The DFT and
NequIP energy origins are set to the total energy of the AB stacked bilayer, correspondingly. A fixed lateral lattice parameter of a = 2.46 Å is
used, and the vertical atomic positions are allowed to relax at each interlayer stacking. The AB, AA, and SP stacking modes, whose positions
are marked on the NequIP PES map, are presented on the right.

Figure 3. Friction simulations of the pristine (V0V0) bilayers. (a) Schematics of the simulation setup (see Methods for details). (b) Top view
of the 9.43° twisted bilayer graphene considered in this work. REBO-ILP (blue) and NequIP (orange) shear-stress traces for the (c) aligned
and (d) twisted graphene bilayers were obtained at a temperature of 0 K.
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Methods and SI section S3). In each iteration, 200 snapshots
were extracted from the MD trajectory, and their total energy
and force root-mean-square errors (RMSEs) relative to DFT
results were calculated. Structures with force RMSE greater
than 100 meV/Å were added to the training set for the
subsequent iteration, whereas the rest was incorporated into
the validation set (see Figure 1c). This process was repeated
for four iterations. To ensure convergence, we extracted
additional 200 snapshots using the final NequIP model to form
a test set, against which we validated that the force and energy
RMSEs leveled off below a desired threshold (see Figure 1d).
As shown in Figure 2a,b, the final NequIP model achieves

very high accuracy, with energy and force RMSE values lower
than 2.0 meV/atom and 60.5 meV/Å, respectively, across all
data sets. Furthermore, it captures well the PBE+MBD binding
energy curve of AB stacked bilayer graphene (see Figure 2c)
without requiring an explicit treatment of long-range
dispersion interactions,16,42,43 and the corresponding shallow
sliding potential energy landscape down to a deviation smaller
than 0.6 meV/atom (see Figure 2d).
To test the reliability of the developed NequIP for

describing sliding dynamics in layered interfaces, we validated
it against well-established interlayer potential (ILP)-based MD
simulations of aligned and twisted pristine bilayer graphene.20

The simulation setup presented in Figure 3a,b comprised two
flexible graphene layers (red and blue spheres). The intra- and
interlayer interactions were described either using the REBO44

and ILP,45 respectively, or using the developed NequIP. The
atoms of the bottom layer were anchored by harmonic springs
of stiffness 50 N/m to their original positions, mimicking a
substrate of about two layers thickness (see SI section S4 for
details). The top layer atoms were laterally driven along the
zigzag direction by a rigid stage (a duplicate of the initial top
layer structure) at a lateral velocity of 10 m/s via springs of the
same stiffness. Periodic boundary conditions were used in the
lateral directions, whereas free boundary conditions were
applied in the out-of-plane direction. To model the effect of a
normal load, a vertical force was applied to every atom in the
rigid layer, thereby creating a normal pressure P transmitted to

the top graphene layer through the harmonic springs. More
details are given in the Methods section.
As shown in Figure 3c, the Rebo-ILP and NequIP shear-

stress traces of the aligned interface show qualitatively the
same stick−slip patterns with a maximal relative difference of
24.5% (0.05 GPa) at the peak positions. This difference can be
partially attributed to the fact that the ILP was fitted against
HSE (Heyd-Scuseria-Ernzerhof46 density functional approx-
imation) + MBD reference DFT data, whereas the NequIP was
trained at the PBE+MBD level of theory (see SI section S5).
Conversely, for the 9.43° twisted bilayer, both Rebo-ILP and
NequIP predict extremely low shear-stresses with the same
average value (see Figure 3d). While the latter predicts larger
oscillations, the overall difference between the two approaches
is of the order of 1.7% (0.12 MPa), which is meaningless
considering the overall extremely low shear stresses involved.
Having established the suitability of the developed NequIP

machinery for studying the static and sliding dynamics of
layered interfaces, we now turn to applying it to the case of
defected graphene contacts. We start by evaluating energetic
considerations of interlayer bond formation.42,47−49 To that
end, we constructed three V1V1 model systems, differing by the
relative lateral position of the two vacancies (see Figure 4a), as
well as a monolayer defected graphene with one vacancy (V1),
and relaxed them using either DFT or NequIP. Figure 4b
compares the corresponding defect formation energy of the V1
monolayer and the bond formation energy of three V1V1
bilayers. The defect formation energy of the V1 monolayer
was calculated as the energy difference between the relaxed V1
structure and pristine monolayer graphene, whereas the bond
formation energy of the three V1V1 bilayers was defined as the
energy difference between their relaxed structures and twice
the energy of a relaxed V1 monolayer (see Methods for further
computational details). The overall difference between the two
computational approaches is typically smaller than 5.5%.
Additionally, the structures optimized using NequIP closely
align with those from DFT optimization, exhibiting atomic
position deviations of less than 0.3 Å and even smaller
interlayer bond deviations (<0.005 Å) as shown in Figure 4a.

Figure 4. Comparisons of (a) the atomic structure and (b) the formation energy of defected graphene, as predicted by DFT and NequIP
from independent optimizations, respectively. The bond lengths of the dangling atoms in the V1 layer and the interlayer bond lengths in
bilayer defected graphene, as predicted by NequIP (and DFT), are compared in panel (a).
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Before moving on to applying NequIP to the case of reactive
sliding dynamics, we have evaluated its performance against
other reactive MLPs (including the deep potential (DP),50

neuroevolution potential (NEP),36,51 Gaussian approximation
potential (GAP),34 and hNN-Grχ

42) and traditional potentials
(including AIREBO,52 Tersoff,53 LCBOP,54 and ReaxFF55) for
the case of pristine bilayer sliding and defected bilayer binding
energetics. Our findings, presented in SI sections S6 and S7,
indicate that while being the relatively computationally

demanding of all approaches considered, the newly developed
NequIP is also the most accurate to describe defected graphitic
interfaces (see SI Figure S13).
Figure 5a illustrates three representative shear-stress traces

of the aligned V1V1 bilayer (orange) under different normal
loads. In the absence of an external load, the ensemble-
averaged force trace of the defected interface resembles that of
the pristine one (blue), indicating minor interlayer bonding
effects on the sliding dynamics. Indeed, by examining the

Figure 5. Room temperature sliding dynamics simulations of defected bilayer graphene. (a) Shear-stress traces of the aligned V1V1 bilayers
(orange) under normal pressures of 0 (top panel), 1.5 (middle panel), and 3 (bottom panel) GPa. Results of the corresponding pristine
interface (V0V0) are shown for comparison in blue. The shaded areas represent the standard deviation calculated for 100 trajectories. (b)
Same as panel (a) for the 9.43° twisted interfaces. (c) Mean shear stress (averaged over a displacement of 5.2 nm of the ensemble-averaged
trace) as a function of normal pressure for the aligned (orange) and twisted (red) V1V1 interfaces. The defect density for the aligned and
twisted interfaces is 0.24 and 0.34%, respectively. Results for the corresponding pristine (V0V0) interfaces are presented in blue and green,
respectively. The COFs extracted from the slopes of the linear fitting curves are marked near each line.

Figure 6. Demonstration of single and consecutive bond formation and rupture events. (a) Snapshots from a room temperature trajectory of
a twisted V1V1 system, under an external pressure of 1.5 GPa, demonstrating a single bond formation and rupture event during sliding. (b)
Same as panel (a) but under an external pressure of 3 GPa, where the system exhibits two consecutive events of bond formation and rupture.
Only atoms in the vicinity of the defects are presented, and atoms involved in interlayer bonding are highlighted by colors. Lateral
displacements are annotated below each snapshot.
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individual trajectories, we found that only 12 out of 100 of the
520 ps trajectories exhibited interlayer bonding. Here,
interlayer bond formation was defined as a state where the
distance between two atoms on adjacent layers is less than 1.8
Å. A similar behavior was found also for the twisted interface
under zero normal load (see Figure 5b), with a bond formation
probability of 3%. At a moderate pressure of 1.5 GPa (middle
panel of Figure 5a), the interlayer binding probability increases
(94% of all trajectories exhibit binding), resulting in substantial
deviations of the V1V1 trajectory from the corresponding V0V0
one at a displacement of ∼1.85 nm, where the two defects are
eclipsed. Notably, for the twisted interface under the same
normal load, the friction trace (which in the absence of defects
is superlubric) is found to be completely dominated by
interlayer binding events with a bond formation probability of
80% (middle panel of Figure 5b, see also Figure 6a). A
qualitatively similar picture arises under a normal load of 3
GPa (see lower panels of Figure 5a,b), with an increase of
bond formation probability to 100%, a wider displacement
range along which interlayer binding can occur, and the
observation of multiple events of bond formation and rupture
(Figure 6b). The above results indicate a dual contribution to
the friction of defected interfaces: a physical contribution
resulting from the corrugation of the sliding PES of the pristine
lattice and a chemical contribution due to interlayer bonding.
These effects are naturally manifested in the friction

coefficients of the different interfaces. Figure 5c presents the
averaged shear-stress dependence on the external normal load.
First, as expected, the misaligned twisted interfaces present
consistently lower shear-stress than their aligned counterparts.
The inclusion of defects increases the friction coefficient of the
interface due to interlayer binding effects, where the relative
increase is found to be considerably more dramatic for the
twisted interface, which in the absence of defects, exhibits
superlubric characteristics (COF of 3.2 × 10−4). Nonetheless,
under the defect density considered herein, interlayer binding
does not completely eliminate the superlubric nature of the
twisted interface (the COF increases to 6.3 × 10−3). We note
that under ultrahigh external pressures (>10 GPa) intermittent
interlayer covalent binding is expected to occur also in pristine
graphene interfaces via, e.g., SP3 hybridization.56−58 Hence,
one may expect elimination of superlubricity of twisted
graphene interfaces at the ultra-high-pressure regime not
only through increased Pauli repulsions but also due to
temporary local covalent binding.
Overall, our simulations demonstrate that the friction

coefficient of defected layered interfaces can be separated
into two components, namely, a physical and a chemical
contribution. To demonstrate this, we write the coefficient as
the ratio between the friction force and the normal force, COF
= Fr/N. The friction force is evaluated as an average over the
lateral force trace, which can be split into two contributions:
(i) nonbonded configurations (FrNB) that are dominated by
physical drag similar to that of the pristine interface; and (ii)
covalently bonded configurations (FrB) that are dominated by
chemical drag, at sufficiently high defect densities. Correspond-
ingly, the COF can be written as the sum of these
contributions: COF = (FrNB + FrB)/N = COFphys + COFChem.
While the physical contributions of aligned and misaligned
interfaces of similar surface areas differ by orders of magnitude,
the chemical contributions are similar in both cases.

CONCLUSIONS
The results presented above demonstrate the power of the
developed MLP in the study of reactive dynamics at sliding
layered interfaces. By providing a unified reliable treatment of
intra- and interlayer interactions, we are able to reveal atomic
scale mechanisms of complex bond formation and rupture,
their dependence on normal and shear stresses, and their effect
on friction and wear in superlubric sliding interfaces. To
achieve this, we utilized the state-of-the-art GNN-based
NequIP framework trained against quantum-mechanical DFT
calculations via iterative learning cycles. For the pristine
interfaces considered, the developed machinery was found to
be ∼1−3 orders of magnitude slower than that based on
physically motivated classical force-fields but still considerably
faster to apply than standard ab initio molecular dynamics
(AIMD, based on Born−Oppenheimer approximation) simu-
lations (∼3−4 orders of magnitude faster, see SI Figure S13).
Furthermore, the scaling of the latter with the system size is
considerably more dramatic. Given that, when simulating the
complex reactive sliding of defected layered interfaces, where
dedicated classical force-fields are currently lacking, the
developed MLP provides a desirable compromise between
accuracy and computational burden. Finally, it should be noted
that the same approach can be implemented for other defected
layered interfaces, being homogeneous or heterogeneous.
Notably, it is also applicable to bulk material interfaces
where wear effects, which are very hard to study on the atomic
level, are known to have a central tribological role.

METHODS
GNN Potential Training. In this study, we use the NequIP38

scheme (version 0.5.6 with a total of 136,760 parameters) to develop
a GNN potential for bilayer defected graphene. NequIP uses message-
passing architectures and equivariant feature representations for
enhanced data efficiency and accuracy.38,59 The former enables the
interatomic interactions to propagate along the graph at each layer of
the network. More specifically, the site energy of one atom is
determined by the atomic environment of the neighbor atoms in
adjacent layers through a series of convolutions within a
predetermined cutoff distance (see Figure 1b). In the present study,
we use a cutoff radius of 7 Å and four interaction layers. This setup,
corresponding to an effective interaction cutoff distance of 28 Å, can
account for long-range interactions. For equivariant feature
representations, NequIP uses a set of irreducible representations of
the rotational group O(3), each characterized by a rotation order l. l =
0,1, . . . denote scalars, vectors, and higher-order tensors, respectively.
Here, we used a maximum rotation order of 1 with 32 features, thus
maintaining a balance between high-order accuracy and the
corresponding slower computational speed.38,59 These choices of
cutoff radius, number of interaction layers, and rotation orders were
previously tested and found to be adequate,38,59 as further verified by
our extensive tests presented herein. To train the GNN, we employ
the Adam optimizer60 with a learning rate of 0.005 and a batch size of
10. The total loss function is defined as a weighted average of the
energy and atomic force errors on the training set. The termination of
training was manually determined by monitoring the convergence of
the loss for the validation set to prevent overfitting. Convergence is
typically reached after 4,000−5,000 epochs. In total, we gathered
3,988 structures (with 143,437 atoms) and 4,467 structures (with
225,606 atoms) for the training and validation sets, respectively. All
structures are provided in the shared data sets (see Data Availability
Statement).
MD Simulations. All MD simulations were carried out using the

LAMMPS code (version 29 Sep 2021)61 with a dedicated interface to
NequIP.62 All simulations were run at a temperature of 300 K using a
Langevin thermostat63 in the canonical (NVT) ensemble. The
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thermostat was applied to all interface atoms in all directions with a
damping parameter of 1 ps. The validity of this choice is
demonstrated in SI section S9. A fixed time step of 1 fs was used
throughout the simulations. We investigated two types of bilayer
systems: V0V0 (pristine bilayers) and V1V1 (a single vacancy in each
layer), each having two different stacking configurations (aligned and
twisted). For the aligned interface, we used the AB stacking mode,
yielding a size of 5.2 × 2.1 nm and containing 840 (838) atoms for
the V0V0 (V1V1) bilayer. For the twisted interface, we constructed a
bilayer system of a twist angle of 9.43°, to establish a relatively small
hexagonal supercell, containing 148 atoms (Figure 3b), following the
method described in ref 64. This hexagonal supercell was then
expanded into a 5.2 × 1.5 nm rectangular supercell containing a total
of 592 atoms for the V0V0 bilayer. To create the V1V1 bilayer
supercell, we manually removed one atom in each layer of the
corresponding V0V0 system to create a vacancy pair laterally spaced by
∼1.7 nm. More details on the atomic structure of all four bilayer
systems are given in SI section S8. For structural visualization
purposes, the OVITO package65 was used.

For the V0V0 bilayers, we calculated 10 independent trajectories for
each simulation setup to compute the average force traces. Given the
stochastic nature of interlayer bonding, we increased the number of
independent trajectories to 100 for the V1V1 bilayers.
DFT Calculations for Reference Data Generation. The DFT

calculations were carried out using the PBE exchange-correlation
density functional approximation66 in conjunction with a many-body
dispersion (MBD) correction,67 as implemented in the Vienna ab
initio simulation package (VASP).68,69 Single-point calculations were
converged with an energy cutoff of 850 eV, using the projector
augmented wave function (PAW) appaorch70 and a threshold of 10−8

eV for the electronic self-consistent loop. The out-of-plane supercell
dimension is set at 50 Å to avoid spurious interactions between
adjacent images. We sampled the in-plane Brillouin zone using a
dense Γ-centered grid with a k-point density of 0.15/Å. The
tetrahedron smearing method (ISMEAR = −5) was used for the
total energy calculation.
Defect Formation Energy Calculations. In this work, the

formation energies of four defected structures were considered: (i)
monolayer graphene with a single vacancy (denoted by V1); (ii) an
AB-stacked V1V1 graphene bilayer, where the vacancies are laterally
separated by 2.84 Å (denoted by ABI); (iii) an AB-stacked V1V1
bilayer, where the vacancies are laterally separated by 1.42 Å (denoted
by ABII); and (iv) an AA-stacked V1V1 bilayer with eclipsed vacancies
(denoted by AAIII). Here, I, II, and III denote the number of
interlayer covalent bonds that these systems form following structural
optimizations (Figure 4a). In these calculations, geometry optimiza-
tion was performed for each structure separately using DFT and
NequIP. In order to evaluate the formation energies of the interlayer
bonded structures, we performed DFT geometry optimization of V1V1
bilayers, initially positioned at a subequilibrium interlayer distance of
2.0 Å. The optimization was performed using the VASP code, with the
RMM-DIIS algorithm71 (IBRION = 1 keyword). Both supercell and
atomic position optimizations were performed with an atomic force
convergence criterion of 0.01 eV/Å. The optimized structures were
then further relaxed using NequIP with the FIRE algorithm,72 as
implemented in the atomic simulation environment (ASE) package.73
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