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ABSTRACT
Machine learned potentials (MLPs) have been widely employed in molecular dynamics simulations to study thermal transport. However, the
literature results indicate that MLPs generally underestimate the lattice thermal conductivity (LTC) of typical solids. Here, we quantitatively
analyze this underestimation in the context of the neuroevolution potential (NEP), which is a representative MLP that balances efficiency
and accuracy. Taking crystalline silicon, gallium arsenide, graphene, and lead telluride as examples, we reveal that the fitting errors in the
machine-learned forces against the reference ones are responsible for the underestimated LTC as they constitute external perturbations to
the interatomic forces. Since the force errors of a NEP model and the random forces in the Langevin thermostat both follow a Gaussian
distribution, we propose an approach to correcting the LTC by intentionally introducing different levels of force noises via the Langevin
thermostat and then extrapolating to the limit of zero force error. Excellent agreement with experiments is obtained by using this correction
for all the prototypical materials over a wide range of temperatures. Based on spectral analyses, we find that the LTC underestimation mainly
arises from increased phonon scatterings in the low-frequency region caused by the random force errors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0213811

I. INTRODUCTION

Lattice thermal conductivity (LTC) of solids is a crucial phys-
ical property in many applications, including thermal management
of electronics,1,2 thermoelectric energy conversion,3–5 and thermal
barrier coatings.6,7 Predicting and engineering LTC8 is, therefore,
of broad interest. Nevertheless, challenges abound owing to the
presence of complex structures,9 defects,10 and disorders.10 Among

various approaches to calculating LTC,11 molecular dynamics (MD)
simulation plays a unique role due to its versatility and its nat-
ural inclusion of the full lattice anharmonicity. MD simulations
are widely applicable in crystals, glasses,12 and also liquids.13 Two
basic categories are commonly used, including equilibrium molecu-
lar dynamics (EMD) based on the Green–Kubo formalism14,15 and
non-equilibrium molecular dynamics (NEMD) based on Fourier’s
law of heat conduction. Notably, the homogeneous non-equilibrium
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molecular dynamics (HNEMD) method, initially developed by
Evans16 for pairwise interactions and recently generalized to many-
body interactions,17 offers great efficiency for LTC calculations.
However, the applicability and predictive power of MD simulations
have long been limited by the availability and accuracy of empirical
interatomic potentials.

A promising solution to this issue involves constructing
machine learned potentials (MLPs) trained against reference ener-
gies, forces, and virial stresses of diverse atomic structures calculated
at the quantum mechanical level. Many MLPs have been used
for thermal conductivity modeling. Enabled by MLPs, the LTCs
of many crystals with strong phonon anharmonicity or disorder
have been successfully obtained through MD simulation driven
by MLP (MLMD), including amorphous GeTe,18 SnSe,19 PbTe,20

metal–organic frameworks,21 and PH4AlBr4.22 Moreover, with
proper quantum corrections, quantitative agreement with experi-
mental data has also been achieved for amorphous materials23,24

and liquid water25 over a wide range of temperatures. Despite these
successes, previous studies have also shown that for materials with
relatively high LTCs, such as CoSb3

26 and cubic silicon (c-Si),27 the
predicted LTCs from MLMD calculations are generally lower than
the experimental values. To the best of our knowledge, this discrep-
ancy remains to be systematically understood and corrected, which
constitutes the main focus of our present work.

In light of the critical impact of the interatomic forces on the
accuracy of MD simulations, we first evaluate the effect of random
forces on LTC using HNEMD simulations with a Langevin ther-
mostat28 based on empirical potentials. A decrease in LTC with
an increasing level of random forces is consistently observed in
six representative materials: amorphous silicon (a-Si), c-Si, cubic
germanium (c-Ge), Si–Ge alloy, graphene, and (10, 10)-carbon nan-
otube (CNT). Subsequently, we focus on four benchmark materials,
including c-Si, GaAs, graphene, and PbTe, and perform LTC calcu-
lations using MLMD. In particular, we employ the neuroevolution
potential (NEP)29–31 for its balanced efficiency and accuracy. Sim-
ilar to literature results, we observe a consistent underestimation
of LTC from the MLMD simulations, as compared to the experi-
mental values. However, since the residual force errors of a NEP
model and the random forces (white noises) in the Langevin ther-
mostat both follow a Gaussian distribution, we propose an approach
to correcting the LTC by intentionally introducing different levels
of force noises via the Langevin thermostat and then extrapolating
to the limit of zero force error. This extrapolation successfully cor-
rects the LTCs, leading to excellent agreement with experimental
data for all the materials considered in a wide range of tempera-
tures. Spectral analyses reveal that the LTC underestimation before
the correction mainly originates from increased phonon scatterings
at low frequencies caused by the force errors.

II. METHODS
A. Neuroevolution potential
1. The NEP formalism

Here, we briefly review the NEP formalism.29–31 NEP uses a
feedforward neural network to correlate a local descriptor with the
site energy U i of atom i. In a single-hidden-layer neural network

comprising Nneu hidden neurons, U i is expressed as

Ui =
Nneu

∑

μ=1
ω(1)μ tanh(

Ndes

∑

ν=1
ω(0)μν qi

ν − b(0)μ ) − b(1), (1)

where Ndes is the number of descriptor components; qi
ν is the

νth descriptor component of atom i; ω(0)μν , ω(1)μ , b(0)μ , and b(1) are
the trainable parameters; and tanh(x) is the nonlinear activation
function in the hidden layer.

The descriptor vector in NEP includes radial and angular
components. The radial components qi

n (0 ≤ n ≤ nR
max) are defined

as

qi
n =∑

j≠i
gn(rij), (2)

where rij is the distance between atoms i and j and gn(rij) are a set
of radial functions, of which each is formed by a linear combination
of Chebyshev polynomials. The angular components include the so-
called n-body (n ≥ 3) correlations. For example, the three-body ones
qi

nl (0 ≤ n ≤ nA
max, 1 ≤ l ≤ lmax) are defined as

qi
nl =

2l + 1
4π ∑j≠i

∑

k≠i
gn(rij)gn(rik)Pl(cos θijk). (3)

Here, Pl is the Legendre polynomial and θijk is the angle formed
by the ij and ik bonds. Note that the radial functions gn(rij) for
the radial and angular descriptor components can have different
cutoff radii, which are denoted as rR

c and rA
c , respectively. The free

parameters are optimized using the separable natural evolutionary
strategy32 by minimizing a loss function that is a weighted sum of the
root-mean-square errors (RMSEs) of energy, force, and virial stress,
for Ngen generations with a population size of Npop. The hyperpa-
rameters used for all the materials considered in this work are listed
in Table S1.

2. Training datasets
For c-Si, GaAs, graphene, and PbTe, we generate datasets

through density functional theory (DFT) calculations using the
Vienna Ab initio simulation package33 with the ion–electron inter-
actions described by the projector-augmented wave method.33,34 For
GaAs, the Perdew–Zunger functional with the local density approx-
imation35 is used to describe the exchange–correlation of electrons,
while the Perdew–Burke–Ernzerhof functional with the generalized
gradient approximation36 is used for the other materials. The cutoff
energy is 400 eV for PbTe and 600 eV for the other materials. The
k-point mesh is 4 × 4 × 4 for c-Si, 2 × 2 × 2 for GaAs and PbTe, and
6 × 6 × 1 for graphene. The energy convergence threshold is 10−6 eV
for c-Si and graphene and 10−8 eV for GaAs and PbTe.

The dataset for each material consists of structures from
ab initio molecular dynamics (AIMD) simulations (called AIMD
structures below) possibly supplemented by those from random cell
deformations and atom displacements (called perturbation struc-
tures below). For c-Si, there are 900 AIMD structures sampled at
various temperatures (100–1000 K) and strain states (unstrained,
uniaxial strains of ±1% and ±2%, biaxial strains of ±0.5% and ±1%)
and 70 perturbation structures. Each c-Si structure has 64 atoms.
For GaAs, there are 197 AIMD structures sampled at various tem-
peratures (100–900 K) in the NPT ensemble and 99 perturbation
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structures up to ±4% strains. Each GaAs structure has 250 atoms.
For graphene, there are 700 AIMD structures sampled at various
temperatures (100–1000 K) and strain states (unstrained, biaxial
strains of ±0.5%, ±1%, and 2%). Each graphene structure has 72
atoms. For PbTe, there are 60 AIMD structures sampled from 100
to 1100 K with a fixed cell and 64 perturbation structures up to ±4%
strains. Each PbTe structure has 216 atoms.

After obtaining the datasets, we used the GPUMD package37 (the
nep executable) to train the NEP models. The parity plots and accu-
racy metrics are detailed in Figs. S1–S4. Force test errors will be
further discussed and used in Sec. III B.

B. Thermal conductivity calculation using MD
1. The HNEMD method

We use the efficient HNEMD method17 for many-body poten-
tials to calculate the LTCs. In HNEMD, an external driving force on
each atom i

Fext
i = Fe ⋅Wi (4)

is applied during the simulation. Here, Fe is the driving force
parameter (of the dimension of inverse length) and29,31

Wi =∑
j≠i

rij ⊗
∂Uj

∂rji
(5)

is the virial tensor of atom i, where U j is the site energy of atom
j, and rij ≡ rj − ri, with ri being the position of atom i. The driving
force parameter should be large enough to ensure a large signal-to-
noise ratio and be small enough to maintain the system in the linear-
response regime. In the linear-response regime, the LTC tensor κμν
can be calculated from the following relation:17

⟨Jμ(t)⟩ne

TV
=∑

ν
κμνFe

ν, (6)

where ⟨Jμ(t)⟩ne represents a non-equilibrium ensemble average of
the heat current, T is the system temperature, and V is the system
volume. The heat current for the NEP model has been derived to
be29,31

J =∑
i

Wi ⋅ vi, (7)

where vi is the velocity of atom i.
The HNEMD formalism also allows for an efficient calculation

of the frequency-resolved LTC κ(ω) via the following relation:17

2
VT∫

+∞

−∞

eiωtKμ
(t)dt =∑

ν
κμν(ω)Fe

ν, (8)

where

Kμ
(t) =∑

i
∑

ν
⟨Wμν

i (0)v
ν
i (t)⟩ne (9)

is the virial-velocity correlation function.

2. Thermostats in HNEMD simulations
HNEMD simulations are normally performed in the NVT

ensemble realized by using a global thermostat, such as the
Nosé–Hoover chain (NHC)38 or the Bussi–Donadio–Parrinello39

thermostat. In contrast, a local thermostat such as the Langevin ther-
mostat28 is avoided because it can introduce (white) noises through
random forces, leading to the following equations of motion:

dri

dt
=

pi
mi

,
dpi
dt
= Fi −

pi
τT
+ fi. (10)

Here, τT is a time parameter; ri, pi, and mi are, respectively, the
position, momentum, and mass of atom i; Fi is the force on atom
i resulting from the interatomic potential; and fi is the random force
on atom i. Each component of the random force forms a Gaussian
distribution with zero mean and a variance of

σ2
L =

2kBTm
τTΔt

, (11)

where m is the average atom mass in the system, kB is the Boltzmann
constant, and Δt is the integration time step. The random forces can
affect the dynamics of the system and thus time-correlation prop-
erties such as the heat current autocorrelation function, leading to
reduced LTC as compared to the case of using a global thermo-
stat. Clearly, a smaller τT gives a larger random force variance and a
stronger reduction in the LTC. We will demonstrate this effect using
examples.

3. MD simulation details
All the MD simulations are performed using the GPUMD pack-

age37 (the gpumd executable), with a time step of 1 fs. For all
the materials, we use a sufficiently large simulation cell to elimi-
nate finite-size effects. In MD simulations with empirical potentials,
the simulation cells contain 32 768 atoms for Si–Ge alloy, c-Ge,
c-Si, and a-Si, 15 416 atoms for graphene, and 16 280 atoms for
the (10,10)-CNT. The a-Si samples are prepared by employing a
melt–quench–anneal process, first equilibrating at 2000 K for 10 ns,
then quenching down to 300 K during 30 ns, and finally annealing
at 300 K for 10 ns. In MD simulations with NEP models, the simu-
lation cells contain 13 824, 8000, 16 000, and 36 000 atoms for c-Si,
GaAs, graphene, and PbTe, respectively. These cells have been tested
to be large enough to eliminate the finite-size effects in HNEMD
simulations (see Fig. S7). For each material, we first equilibrate the
system in the NPT ensemble (with a target pressure of zero) for 2 ns
and NVT ensemble for another 2 ns and then calculate the LTC
in the NVT ensemble during a production time of 10–20 ns. For
each material at each temperature, three to five independent runs
are performed to improve the statistical accuracy and obtain an error
estimate. The error bars are calculated from the statistical standard
error of independent simulations. An example of c-Si at 300 K is
shown in Fig. S6.

III. RESULTS AND DISCUSSION
A. Thermal conductivity underestimation in MLMD

To begin with, we take c-Si as an example to demonstrate the
thermal conductivity underestimation in MLMD simulations, using
NEP as a representative MLP. As illustrated in Fig. 1, the calculated
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FIG. 1. Comparison of κ for c-Si from NEP-MD simulations and experimental
measurements.40–42 Here, the NHC thermostat is used. Error bars are smaller
than the symbol sizes for the calculated values.

TABLE I. RMSEs σmlp of force prediction for the four NEP models at various
temperatures.

T (K)

σmlp (meV/Å)

c-Si GaAs Graphene PbTe

300 16.7 16.6 29.2 27.0
400 21.3 19.8 30.1 29.9
500 28.3 23.5 32.5 34.4
600 30.1 26.8 36.6 37.1
700 41.6 30.2 42.4 42.1

LTC values from 300 to 700 K are consistently lower than experi-
mental measurements, especially at low temperatures. For instance,
at 300 K, MLMD simulations yield a LTC of 102 ± 6 W/m K. While
this is more accurate than the value of 240 W/m K as obtained
from a Stillinger–Weber potential,43 it is still ∼32% lower than the
experimental value of about 150 W/m K.40 An EMD simulation
based on the Gaussian approximation potential (GAP) also reported
a lower-than-experiment value of 121 W/m K.27 A similar trend
of underestimation is observed for c-Si at other temperatures by
GAP,27 for GeTe by NEP,44 and for CoSb3

26 by moment tensor
potential.

B. Role of force noises in reducing LTC
To understand the underestimation of the LTC from MLMD

simulations, we notice that a MLP usually has a certain level of error
for force prediction compared to the reference data. The RMSEs σmlp
of force prediction for the four materials we considered at different
temperatures are presented in Table I.

A crucial observation is that the force errors follow a Gaussian
distribution, as shown in Fig. 2 for the example of c-Si at 300 K. This
distribution is the same as that for the random forces in the Langevin
thermostat, i.e., a Gaussian distribution with zero mean and a certain
variance. Based on this similarity, an understanding of the underes-
timation of the LTC by MLMD simulations can thus be obtained by
studying the effect of the Langevin thermostat on the LTC. When the
system is coupled to the Langevin thermostat, a random frictional
force will be added to all atoms, affecting the dynamics of the system.

FIG. 2. Force error distribution for c-Si at T = 300 K. Fitting to the Gaussian
distribution yields a coefficient of determination R2 = 0.995.

According to Newton’s equation of motion, the effect of random
forces on the atoms is similar to that from randomly varied atomic
masses. Thus, the coupling to Langevin thermostat introduces an
additional phonon scattering term, of which the strength can be
tuned by varying the coupling constant. One could directly use a
NEP model for this test, but due to the lower computational cost
of empirical potentials, we first use the Tersoff empirical potential45

to study this effect.
In Fig. 3, we show the inverse LTC (1/κ) at 300 K as a function

of σL for six representative materials, including a-Si, Si–Ge alloy,
c-Ge, c-Si, graphene, and (10,10)-CNT. As expected, 1/κ increases
with increasing σL, which indicates a stronger effect of the random
forces in the Langevin thermostat in reducing the calculated LTC.
Notably, for all the six materials, 1/κ exhibits a linear relationship
with σL. This suggests that the intrinsic LTC without the influence
of the random forces in the Langevin thermostat can be obtained
by extrapolating to σL = 0. Indeed, the extrapolated values align well
with the results from HNEMD simulations based on the NHC ther-
mostat that does not involve random forces, with the largest relative
error being <1.5% (see Table S2).

The linear relation between 1/κ and σL can be justified based
on the kinetic theory of phonons and Matthiessen’s rule. Taking
the random forces in the Langevin thermostat as an extra source of
phonon scattering, we have

1
κ
=

1
κ0
+

1
1/3CvgΛL

, (12)

where κ and κ0 are the LTCs with and without the influence of
the random forces, respectively, C is the heat capacity, vg is the
phonon group velocity, and ΛL is the phonon mean free path result-
ing from the random forces in the Langevin thermostat. Under
first-order approximation with sufficiently small σL, 1/ΛL should be
proportional to σL, which brings Eq. (12) to

1
κ
=

1
κ0
+ βσL, (13)

which gives the observed linear relation between 1/κ and σL with β
being a slope parameter.
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FIG. 3. Inverse LTC (1/κ) as a function of the random force variance σL of the Langevin thermostat [see Eq. (11)] for (a) a-Si and Si–Ge alloy, (b) c-Ge and c-Si, and (c)
graphene and (10,10)-CNT at 300 K. The hollow and filled symbols are the results from the NHC and Langevin thermostats, respectively. The solid lines represent the linear
fits to the Langevin data only.

FIG. 4. Inverse LTC (1/κ) from NEP-MD simulations as a function of the total force error σ total at different temperatures for (a) c-Si, (b) GaAs, (c) graphene, and (d) PbTe.
The solid lines indicate linear fits, and the points of intersection at σ total = 0 correspond to the corrected LTC values.

C. Correction of LTC in MLMD
Based on the results above, we can understand why MLMD

usually underestimates the LTC, particularly for high-κ materials.
According to the linear relation between the inverse LTC and the
random force variance, we can devise a method to correct the under-
estimation of LTC due to the force errors in MLMD. To this end, we
note that both the force errors in MLMD and the random forces in
the Langevin thermostat follow a Gaussian distribution, and when
they are present simultaneously, a new set of force errors are created
with a larger variance given by

σtotal
2
= σL

2
+ σmlp

2, (14)

according to the properties of Gaussian distribution. Therefore, we
can intentionally introduce extra force errors by using MLP-based
HNEMD simulations with the Langevin thermostat. The LTC κ0
without any force errors (including the force errors of the MLP) can
be obtained by an extrapolation based on the following relation:

1
κ
=

1
κ0
+ βσtotal, (15)

where κ is the LTC of a material calculated by using MLMD with a
certain force error variance σmlp and the Langevin thermostat with
a certain random force variance σL. The linear relation between 1/κ
and σtotal is unfailingly confirmed in Fig. 4 for the four representative
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FIG. 5. Corrected (using the Langevin thermostat and extrapolation) and uncorrected (using the NHC thermostat) κ as a function of temperature for (a) c-Si, (b) GaAs, (c)
graphene, and (d) PbTe. Experimental values are from Refs. 40–42 (c-Si), Refs. 46–50 (GaAs), Refs. 51–54 (graphene), and Refs. 55 and 56 (PbTe). It is worth noting that
the experimentally synthesized samples may contain defects such as vacancies and dislocations. In addition, the synthesized samples usually have limited sizes. Thus, the
experimentally measured samples may involve weak defect and boundary scatterings, leading to slight deviations between measured and predicted thermal conductivities.

materials in a wide range of temperatures, whose LTCs span three
orders of magnitude.

In Fig. 5, we compare the uncorrected and corrected LTCs
from MLMD simulations with experimental results for c-Si, GaAs,
graphene, and PbTe. In all the systems, the uncorrected LTCs are
consistently lower than the experimental results in the entire tem-
perature range due to the presence of force errors in the MLPs.
Remarkably, once the force errors in the MLPs are eliminated via
our extrapolation scheme, the LTCs closely approach the exper-
imental data at all the temperatures studied. For graphene, the
corrected LTCs slightly exceed the measured values but remain
within the experimental uncertainties. This minor discrepancy could
arise from factors such as isotope scattering and finite-size effects in
the experimental setups,51–54 which generally lead to reduced LTCs.

To demonstrate that the thermal conductivity underestimation
is not specific to NEP, we consider the deep potential (DP)57,58 as
an additional example. We train a DP model for silicon using the
same training dataset as used for NEP. The force RMSE at 300 K
is determined to be 29.0 meV/Å. Because HNEMD is not avail-
able for the DP model via the LAMMPS MD engine,59 we perform
EMD simulations instead. Similar to HNEMD simulations, we use
the Langevin thermostat with coupling times of 350, 250, 100, and
40 ps to introduce additional force errors, giving rise to total force
errors of 35.7, 38.0, 48.4, and 67.9 meV/Å, respectively. We also
use the NHC thermostat corresponding to the total force error of
29.0 meV/Å. The results are shown in Fig. 6. Clearly, the thermal
conductivity predicted from the DP model with no additional force
errors (corresponds to the case of using the NHC thermostat) is

FIG. 6. Calculated LTC for c-Si from NEP-HNEMD and DP-EMD simulations as a
function of the total force error σ total. The DP-EMD results are obtained from 20
independent runs, each with a production time of 2 ns.

also underestimated compared to the experimental value. With the
decrease in coupling time in the Langevin thermostat, the thermal
conductivity reduces gradually. Based on our proposed extrapola-
tion formula [Eq. (15)], the corrected thermal conductivity from DP
is 151 W/m K, which is very close to the one obtained by NEP (160
W/m K) with a relative difference of ∼5%. Therefore, we conclude
that the underestimation of LTC is a common issue in MLPs and
can be corrected by our proposed method.

The need for LTC correction is more pronounced in materials
with higher LTCs and at lower temperatures. This is attributed to the
weaker anharmonic phonon–phonon interactions, which leads to a
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FIG. 7. Spectral LTC κ(ω) from NEP-MD simulations using the NHC and Langevin
thermostats for (a) c-Si and (b) PbTe, both at 300 K.

relatively stronger contribution of the phonon scattering by the force
errors. This also explains why the amount of correction is large for
graphene, which is one of the most thermally conductive materials,
intermediate for c-Si and GaAs that have intermediate LTCs, and
small for PbTe that has a low LTC. Furthermore, the spectral LTC
results in Fig. 7 show that the force errors mainly reduce κ(ω) in the
low-frequency region. With increasing force errors, κ(ω) in the low-
frequency region is more and more reduced. This further supports
the large effect of the force errors in high-LTC materials, which usu-
ally have large κ(ω) in the low-frequency region. Therefore, MLMD
simulations remain largely accurate for low-LTC materials, such as
PbTe,20 a-Si,23 amorphous SiO2,24 and liquid water.25

IV. CONCLUSIONS
In summary, our systematic investigation revealed that the

underestimation of lattice thermal conductivity commonly observed
in the literature is primarily due to force fitting errors in machine
learned potentials. Using empirical potentials and Langevin ther-
mostat we demonstrated that introducing random forces on atoms
can significantly reduce the lattice thermal conductivity, supporting
our hypothesis. These random forces act as an additional source of
phonon scattering, thereby reducing the lattice thermal conductiv-
ity. Employing the kinetic theory of phonons and Matthiessen’s rule,
we established a linear extrapolation formula to estimate the ther-
mal conductivity in the absence of random forces. The validity of
the extrapolation scheme was tested using empirical potentials on
various materials, including a-Si, Si–Ge alloys, c-Si, c-Ge, graphene,
and CNT.

We established that the force errors in machine-learned poten-
tials follow a Gaussian distribution, akin to the distribution of

random forces in the Langevin thermostat. This similarity inspired
us to intentionally introduce extra force noises via the Langevin ther-
mostat and then extrapolate to the limit of zero force error. The
extrapolated results show excellent agreement with experimental
data over a broad temperature range for all the materials stud-
ied. Spectral thermal conductivity analyses further indicate that the
underestimation of the lattice thermal conductivity is mainly due to
increased acoustic phonon scatterings caused by the force errors.
Our findings provide a clear explanation for the underestimated
thermal conductivity often observed in molecular dynamics simula-
tions based on machine learned potentials. The method of correcting
this underestimation we developed will significantly enhance the
applicability of machine learned potentials in the prediction of lattice
thermal conductivity.

SUPPLEMENTARY MATERIAL

See the supplementary material for the hyperparameters used
in NEP, the calculated thermal conductivity using empirical poten-
tials, phonon dispersion relations from NEP models as compared
to DFT calculations, size-convergence tests for thermal conductivity
calculations, and the parity plots of trained NEPs.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science

Foundation of China (Grant Nos. 12174276 and 52076002), the
Basic and Applied Basic Research Foundation of Guangdong
Province (Grant No. 2024A1515010521), and the New Cornerstone
Science Foundation through the XPLORER PRIZE. The Center of
Campus Network and Modern Educational Technology of Guang-
dong University of Technology and the High-performance Comput-
ing Platform of Peking University are acknowledged for providing
computational resources and technical support for this work. P.Y. is
supported by the Israel Academy of Sciences and Humanities and
Council for Higher Education Excellence Fellowship Program for
International Postdoctoral Researchers.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

X.W. and W.Z. contributed equally to this work.

Xiguang Wu: Data curation (equal); Investigation (equal); Visual-
ization (equal); Writing – original draft (equal). Wenjiang Zhou:
Data curation (equal); Investigation (equal); Visualization (equal);
Writing – original draft (equal). Haikuan Dong: Data curation
(equal); Formal analysis (equal); Investigation (equal); Writing –
review & editing (equal). Penghua Ying: Data curation (equal); For-
mal analysis (equal); Writing – review & editing (equal). Yanzhou

J. Chem. Phys. 161, 014103 (2024); doi: 10.1063/5.0213811 161, 014103-7

Published under an exclusive license by AIP Publishing

 01 July 2024 14:10:02



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Wang: Software (equal); Writing – review & editing (equal). Bai
Song: Funding acquisition (equal); Resources (equal); Supervi-
sion (supporting); Writing – review & editing (equal). Zheyong
Fan: Formal analysis (equal); Methodology (equal); Software (lead);
Writing – review & editing (equal). Shiyun Xiong: Conceptualiza-
tion (lead); Formal analysis (equal); Funding acquisition (equal);
Methodology (equal); Project administration (lead); Resources
(lead); Supervision (lead); Writing – review & editing (equal).

DATA AVAILABILITY
All the training datasets and the trained NEP models are

freely available at https://gitlab.com/brucefan1983/nep-data. The
DP training and potential files as well as MD input files are freely
available at https://github.com/hityingph/supporting-info.

REFERENCES
1A. L. Moore and L. Shi, “Emerging challenges and materials for thermal
management of electronics,” Mater. Today 17, 163–174 (2014).
2J. S. Kang, M. Li, H. Wu, H. Nguyen, T. Aoki, and Y. Hu, “Integration of boron
arsenide cooling substrates into gallium nitride devices,” Nat. Electron. 4, 416–423
(2021).
3G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater.
7, 105–114 (2008).
4L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton,
V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high
thermoelectric figure of merit in SnSe crystals,” Nature 508, 373–377 (2014).
5W. Zhou, Y. Dai, J. Zhang, B. Song, T.-H. Liu, and R. Yang, “Effect of
four-phonon interaction on phonon thermal conductivity and mean-free-path
spectrum of high-temperature phase SnSe,” Appl. Phys. Lett. 121, 112202 (2022).
6J. H. Perepezko, “The hotter the engine, the better,” Science 326, 1068–1069
(2009).
7R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, “Overview on
advanced thermal barrier coatings,” Surf. Coat. Technol. 205, 938–942 (2010).
8X. Qian, J. Zhou, and G. Chen, “Phonon-engineered extreme thermal conductiv-
ity materials,” Nat. Mater. 20, 1188–1202 (2021).
9T. Tadano and S. Tsuneyuki, “Quartic anharmonicity of rattlers and its effect on
lattice thermal conductivity of clathrates from first principles,” Phys. Rev. Lett.
120, 105901 (2018).
10R. Hanus, R. Gurunathan, L. Lindsay, M. T. Agne, J. Shi, S. Graham, and G.
Jeffrey Snyder, “Thermal transport in defective and disordered materials,” Appl.
Phys. Rev. 8, 031311 (2021).
11X. Gu, Z. Fan, and H. Bao, “Thermal conductivity prediction by atomistic sim-
ulation methods: Recent advances and detailed comparison,” J. Appl. Phys. 130,
210902 (2021).
12Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan, and K. M. Ho,
“Molecular-dynamics simulation of thermal conductivity in amorphous silicon,”
Phys. Rev. B 43, 6573–6580 (1991).
13R. Vogelsang, C. Hoheisel, and G. Ciccotti, “Thermal conductivity of the
Lennard-Jones liquid by molecular dynamics calculations,” J. Chem. Phys. 86,
6371–6375 (1987).
14M. S. Green, “Markoff random processes and the statistical mechanics of time-
dependent phenomena. II. Irreversible processes in fluids,” J. Chem. Phys. 22,
398–413 (1954).
15R. Kubo, “Statistical–mechanical theory of irreversible processes. I. General the-
ory and simple applications to magnetic and conduction problems,” J. Phys. Soc.
Jpn. 12, 570–586 (1957).
16D. J. Evans, “Homogeneous NEMD algorithm for thermal conductivity—
Application of non-canonical linear response theory,” Phys. Lett. A 91, 457–460
(1982).

17Z. Fan, H. Dong, A. Harju, and T. Ala-Nissila, “Homogeneous nonequilibrium
molecular dynamics method for heat transport and spectral decomposition with
many-body potentials,” Phys. Rev. B 99, 064308 (2019).
18G. C. Sosso, D. Donadio, S. Caravati, J. Behler, and M. Bernasconi, “Thermal
transport in phase-change materials from atomistic simulations,” Phys. Rev. B 86,
104301 (2012).
19H. Liu, X. Qian, H. Bao, C. Y. Zhao, and X. Gu, “High-temperature phonon
transport properties of SnSe from machine-learning interatomic potential,”
J. Phys.: Condens. Matter 33, 405401 (2021).
20R. Cheng, X. Shen, S. Klotz, Z. Zeng, Z. Li, A. Ivanov, Y. Xiao, L.-D. Zhao, F.
Weber, and Y. Chen, “Lattice dynamics and thermal transport of PbTe under high
pressure,” Phys. Rev. B 108, 104306 (2023).
21P. Ying, T. Liang, K. Xu, J. Zhang, J. Xu, Z. Zhong, and Z. Fan, “Sub-
micrometer phonon mean free paths in metal–organic frameworks revealed by
machine learning molecular dynamics simulations,” ACS Appl. Mater. Interfaces
15, 36412–36422 (2023).
22P.-H. Du, C. Zhang, T. Li, and Q. Sun, “Low lattice thermal conductivity with
two-channel thermal transport in the superatomic crystal Ph4Albr4,” Phys. Rev. B
107, 155204 (2023).
23Y. Wang, Z. Fan, P. Qian, M. A. Caro, and T. Ala-Nissila, “Quantum-corrected
thickness-dependent thermal conductivity in amorphous silicon predicted by
machine learning molecular dynamics simulations,” Phys. Rev. B 107, 054303
(2023).
24T. Liang, P. Ying, K. Xu, Z. Ye, C. Ling, Z. Fan, and J. Xu, “Mechanisms of
temperature-dependent thermal transport in amorphous silica from machine-
learning molecular dynamics,” Phys. Rev. B 108, 184203 (2023).
25K. Xu, Y. Hao, T. Liang, P. Ying, J. Xu, J. Wu, and Z. Fan, “Accurate prediction
of heat conductivity of water by a neuroevolution potential,” J. Chem. Phys. 158,
204114 (2023).
26P. Korotaev, I. Novoselov, A. Yanilkin, and A. Shapeev, “Accessing thermal con-
ductivity of complex compounds by machine learning interatomic potentials,”
Phys. Rev. B 100, 144308 (2019).
27X. Qian, S. Peng, X. Li, Y. Wei, and R. Yang, “Thermal conductivity model-
ing using machine learning potentials: Application to crystalline and amorphous
silicon,” Mater. Today Phys. 10, 100140 (2019).
28G. Bussi and M. Parrinello, “Accurate sampling using Langevin dynamics,”
Phys. Rev. E 75, 056707 (2007).
29Z. Fan, Z. Zeng, C. Zhang, Y. Wang, K. Song, H. Dong, Y. Chen, and T. Ala-
Nissila, “Neuroevolution machine learning potentials: Combining high accuracy
and low cost in atomistic simulations and application to heat transport,” Phys.
Rev. B 104, 104309 (2021).
30Z. Fan, “Improving the accuracy of the neuroevolution machine learning
potential for multi-component systems,” J. Phys.: Condens. Matter 34, 125902
(2022).
31Z. Fan, Y. Wang, P. Ying, K. Song, J. Wang, Y. Wang, Z. Zeng, K. Xu, E. Lind-
gren, J. M. Rahm, A. J. Gabourie, J. Liu, H. Dong, J. Wu, Y. Chen, Z. Zhong,
J. Sun, P. Erhart, Y. Su, and T. Ala-Nissila, “GPUMD: A package for construct-
ing accurate machine-learned potentials and performing highly efficient atomistic
simulations,” J. Chem. Phys. 157, 114801 (2022).
32T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and heavy
tails for natural evolution strategies,” in Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO ’11 (Association for
Computing Machinery, New York, NY, USA, 2011), pp. 845–852.
33P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50,
17953–17979 (1994).
34G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
35J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional
approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
36J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
37Z. Fan, W. Chen, V. Vierimaa, and A. Harju, “Efficient molecular dynamics
simulations with many-body potentials on graphics processing units,” Comput.
Phys. Commun. 218, 10–16 (2017).

J. Chem. Phys. 161, 014103 (2024); doi: 10.1063/5.0213811 161, 014103-8

Published under an exclusive license by AIP Publishing

 01 July 2024 14:10:02



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

38G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé–Hoover chains: The
canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635–2643
(1992).
39G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity
rescaling,” J. Chem. Phys. 126, 014101 (2007).
40C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and
germanium from 3 K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
41H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal
conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
42P. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds
and III–V alloys,” Solid-State Electron. 10, 161–168 (1967).
43S. G. Volz and G. Chen, “Molecular-dynamics simulation of thermal conductiv-
ity of silicon crystals,” Phys. Rev. B 61, 2651–2656 (2000).
44J. Zhang, H. C. Zhang, W. Li, and G. Zhang, “Thermal conductivity of
GeTe crystals based on machine learning potentials,” Chin. Phys. B 33, 047402
(2024).
45J. Tersoff, “Empirical interatomic potential for silicon with improved elastic
properties,” Phys. Rev. B 38, 9902–9905 (1988).
46A. Amith, I. Kudman, and E. F. Steigmeier, “Electron and phonon scattering in
GaAs at high temperatures,” Phys. Rev. 138, A1270–A1276 (1965).
47J. S. Blakemore, “Semiconducting and other major properties of gallium
arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
48A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal con-
ductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys.
Rev. Mater. 3, 034603 (2019).
49A. V. Inyushkin, A. N. Taldenkov, A. Y. Yakubovsky, A. V. Markov, L. Moreno-
Garsia, and B. N. Sharonov, “Thermal conductivity of isotopically enriched
71GaAs crystal,” Semicond. Sci. Technol. 18, 685 (2003).

50M. G. Holland, “Phonon scattering in semiconductors from thermal conductiv-
ity studies,” Phys. Rev. 134, A471–A480 (1964).
51S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W.
Magnuson, J. Kang, L. Shi, and R. S. Ruoff, “Raman measurements of thermal
transport in suspended monolayer graphene of variable sizes in vacuum and
gaseous environments,” ACS Nano 5, 321–328 (2011).
52S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin,
and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat.
Mater. 11, 203–207 (2012).
53J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, “Thermal conductivity
of suspended pristine graphene measured by Raman spectroscopy,” Phys. Rev. B
83, 081419 (2011).
54W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, “Thermal
transport in suspended and supported monolayer graphene grown by chemical
vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
55J. Androulakis, I. Todorov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, and M.
Kanatzidis, “Thermoelectric enhancement in PbTe with K or Na codoping from
tuning the interaction of the light- and heavy-hole valence bands,” Phys. Rev. B
82, 115209 (2010).
56Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of
electronic bands for high performance bulk thermoelectrics,” Nature 473, 66–69
(2011).
57L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynam-
ics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett.
120, 143001 (2018).
58H. Wang, L. Zhang, J. Han, and E. Weinan, “DeePMD-kit: A deep learning
package for many-body potential energy representation and molecular dynamics,”
Comput. Phys. Commun. 228, 178–184 (2018).
59S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”
J. Comput. Phys. 117, 1–19 (1995).

J. Chem. Phys. 161, 014103 (2024); doi: 10.1063/5.0213811 161, 014103-9

Published under an exclusive license by AIP Publishing

 01 July 2024 14:10:02


